版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則()A. B. C. D.2.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.73.在中,,,,點(diǎn),分別在線段,上,且,,則().A. B. C.4 D.94.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現(xiàn)從中摸出3個球(除顏色與編號外球沒有區(qū)別),則恰好不同時包含字母,,的概率為()A. B. C. D.5.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.6.已知,,,則()A. B. C. D.7.已知函數(shù)若恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.9.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.10.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.12.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知兩個單位向量滿足,則向量與的夾角為_____________.14.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機(jī)選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.15.的展開式中的系數(shù)為__________.16.從集合中隨機(jī)取一個元素,記為,從集合中隨機(jī)取一個元素,記為,則的概率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點(diǎn),滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點(diǎn),使得直線與平面所成角的大小為30°,求的值.18.(12分)已知非零實(shí)數(shù)滿足.(1)求證:;(2)是否存在實(shí)數(shù),使得恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由19.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.21.(12分)某景點(diǎn)上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.22.(10分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,判斷直線為參數(shù))與圓的位置關(guān)系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2.B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.3.B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點(diǎn)睛】此題考查余弦定理和向量的數(shù)量積運(yùn)算,掌握基本概念和公式即可解決,屬于簡單題目.4.B【解析】
首先求出基本事件總數(shù),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計(jì)算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數(shù)為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識,解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.5.C【解析】
由題意可得面,可知,因?yàn)?,則面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識,屬于中檔題.6.B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.7.D【解析】
由恒成立,等價(jià)于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因?yàn)橛珊愠闪ⅲ謩e作出及的圖象,由圖知,當(dāng)時,不符合題意,只須考慮的情形,當(dāng)與圖象相切于時,由導(dǎo)數(shù)幾何意義,此時,故.故選:D【點(diǎn)睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.8.C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.9.D【解析】
根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.10.D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.【點(diǎn)睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.11.C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.12.C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)椋?,則.故選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的計(jì)算和夾角的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.14.【解析】
用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y(jié)果數(shù),再計(jì)算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點(diǎn)睛】本題考查隨機(jī)事件的概率,是基礎(chǔ)題.15.3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€因式取1時,第二個因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€因式取時,第二個因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題16.【解析】
先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個元素,記為,從集合中隨機(jī)取一個元素,記為,則的事件數(shù)為9個,即為,,,其中滿足的有,,,共有8個,故的概率為.【點(diǎn)睛】本題考查了古典概型的計(jì)算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因?yàn)槭堑闹悬c(diǎn),即得證;(Ⅱ)如圖建立空間直角坐標(biāo)系,設(shè),計(jì)算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點(diǎn),連接,則是平面與平面的交線,因?yàn)槠矫?,故,又因?yàn)槭堑闹悬c(diǎn),所以是的中點(diǎn),故.(Ⅱ)由條件可知,,所以,故以為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因?yàn)橹本€與平面所成角的大小為30°所以,即,解得,故此時.【點(diǎn)睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(1)見解析(2)存在,【解析】
(1)利用作差法即可證出.(2)將不等式通分化簡可得,討論或,分離參數(shù),利用基本不等式即可求解.【詳解】又即即①當(dāng)時,即恒成立(當(dāng)且僅當(dāng)時取等號),故②當(dāng)時恒成立(當(dāng)且僅當(dāng)時取等號),故綜上,【點(diǎn)睛】本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎(chǔ)題.19.(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【解析】
(Ⅰ)對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;(Ⅱ)對函數(shù)進(jìn)行求導(dǎo),由題意知,為增函數(shù)等價(jià)于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式求最值即可求出實(shí)數(shù)的取值范圍.【詳解】(Ⅰ)由題意知,函數(shù)的定義域?yàn)?,?dāng)時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.(Ⅱ)由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當(dāng)且僅當(dāng),即時等號成立.所以,所以的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運(yùn)算求解能力和邏輯推理能力;利用導(dǎo)數(shù)把函數(shù)單調(diào)性問題轉(zhuǎn)化為不等式恒成立問題是求解本題的關(guān)鍵;屬于中檔題、??碱}型.20.(1);(2)見解析.【解析】
(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而可得,即,即可證出.【詳解】函數(shù)的定義域?yàn)?,因?yàn)閷θ我夂愠闪?,即對任意恒成立,令,則,當(dāng)時,,故在上單調(diào)遞增,又,所以當(dāng)時,,不符合題意;當(dāng)時,令得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當(dāng)時,;當(dāng)時,,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當(dāng),時,即在上單調(diào)遞增;又,,所以,使得,當(dāng)時,;當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調(diào)性的考查,同時考查轉(zhuǎn)化與化歸的思想,屬于中檔題.21.見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學(xué)期望.(2)由題可得,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- PEP人教版小學(xué)四年級上冊Unit 1 My classroom PartC Story time課件
- 農(nóng)村個人房屋買賣合同協(xié)議書范本
- (立項(xiàng)備案方案)椰雕項(xiàng)目立項(xiàng)申請報(bào)告
- 古代建筑行業(yè)中的追蹤和定位- 王姣27課件講解
- 山東省菏澤市鄆城縣第一中學(xué)2023-2024學(xué)年七年級上學(xué)期第一次月考生物試題(解析版)-A4
- 湖南省婁底市新化縣2024-2025學(xué)年八年級上學(xué)期12月月考道德與法治試題-A4
- 獸醫(yī)寄生蟲題庫與參考答案
- 養(yǎng)老院老人心理關(guān)愛制度
- 養(yǎng)老院老人緊急救援人員職業(yè)道德制度
- 房屋建筑項(xiàng)目工程總承包合同(2篇)
- 企業(yè)發(fā)展未來5年規(guī)劃
- 第六單元 除法(單元測試)(含答案)-2024-2025學(xué)年四年級上冊數(shù)學(xué)北師大版
- 2024年統(tǒng)編版七年級語文上冊期末測試卷(附答案)
- 國開(河北)2024年秋《現(xiàn)代產(chǎn)權(quán)法律制度專題》形考作業(yè)1-4答案
- 2024年消防月全員消防安全知識培訓(xùn)
- 外研版(2024新版)七年級上冊英語期末(Units 1~6)學(xué)業(yè)質(zhì)量測試卷(含答案)
- 2024-2025學(xué)年四年級科學(xué)上冊第一單元《聲音》測試卷(教科版)
- 2024中國南水北調(diào)集團(tuán)水網(wǎng)智慧科技有限公司招聘筆試參考題庫含答案解析
- EPC項(xiàng)目投標(biāo)人承包人工程經(jīng)濟(jì)的合理性分析、評價(jià)
- 六年級上冊《道德與法制》期末復(fù)習(xí)計(jì)劃
- 勞動技能實(shí)操指導(dǎo)(勞動教育)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論