版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,中,點,分別是邊,上的點,,點是邊上的一點,連接交線段于點,且,,,則S四邊形BCED()A. B. C. D.2.已知∠A是銳角,,那么∠A的度數是()A.15° B.30° C.45° D.60°3.如圖,點的坐標是,是等邊角形,點在第一象限,若反比例函數的圖象經過點,則的值是()A. B. C. D.4.下列方程中,是關于x的一元二次方程的是()A. B. C. D.5.如圖,在邊長為1的小正方形組成的網格中,△ABC的三個頂點均在格點上,則tan∠ABC的值為()A. B. C. D.6.如圖,點A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半徑為2,則圖中陰影部分的面積是()A. B. C. D.7.如圖是攔水壩的橫斷面,,斜面坡度為,則斜坡的長為()A.米 B.米 C.米 D.24米8.《代數學》中記載,形如的方程,求正數解的幾何方法是:“如圖1,先構造一個面積為的正方形,再以正方形的邊長為一邊向外構造四個面積為的矩形,得到大正方形的面積為,則該方程的正數解為.”小聰按此方法解關于的方程時,構造出如圖2所示的圖形,已知陰影部分的面積為36,則該方程的正數解為()A.6 B. C. D.9.有三張正面分別標有數字-2,3,4的不透明卡片,它們除數字不同外,其余全部相同,現將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數字之積為正偶數的概率是()A. B. C. D.10.如圖所示,在平面直角坐標系中,有兩點A(4,2),B(3,0),以原點為位似中心,A'B'與AB的相似比為,得到線段A'B'.正確的畫法是()A. B. C. D.11.如圖,D是等邊△ABC外接圓上的點,且∠CAD=20°,則∠ACD的度數為()A.20° B.30° C.40° D.45°12.如圖,在中,.以為直徑作半圓,交于點,交于點,若,則的度數是()A. B. C. D.二、填空題(每題4分,共24分)13.一張直角三角形紙片,,,,點為邊上的任一點,沿過點的直線折疊,使直角頂點落在斜邊上的點處,當是直角三角形時,則的長為_____.14.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉后,能與△ACP′重合,如果AP=3,那么PP′=______.15.如圖,在平面直角坐標系中,點A是x軸正半軸上一點,菱形OABC的邊長為5,且tan∠COA=,若函數的圖象經過頂點B,則k的值為________.16.如圖,直線與兩坐標軸相交于兩點,點為線段上的動點,連結,過點作垂直于直線,垂足為,當點從點運動到點時,則點經過的路徑長為__________.17.如圖,在的矩形方框內有一個不規(guī)則的區(qū)城(圖中陰影部分所示),小明同學用隨機的辦法求區(qū)域的面積.若每次在矩形內隨機產生10000個點,并記錄落在區(qū)域內的點的個數,經過多次試驗,計算出落在區(qū)域內點的個數的平均值為6700個,則區(qū)域的面積約為___________.18.已知三點A(0,0),B(5,12),C(14,0),則△ABC內心的坐標為____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系xOy中,矩形OABC的頂點A在x軸的正半軸上,頂點C在y軸的正半軸上,D是BC邊上的一點,OC:CD=5:3,DB=1.反比例函數y=(k≠0)在第一象限內的圖象經過點D,交AB于點E,AE:BE=1:2.(1)求這個反比例函數的表達式;(2)動點P在矩形OABC內,且滿足S△PAO=S四邊形OABC.①若點P在這個反比例函數的圖象上,求點P的坐標;②若點Q是平面內一點使得以A、B、P、Q為頂點的四邊形是菱形求點Q的坐標.20.(8分)如圖,的直徑,半徑,為上一動點(不包括兩點),,垂足分別為.(1)求的長.(2)若點為的中點,①求劣弧的長度,②者點為直徑上一動點,直接寫出的最小值.21.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.22.(10分)如圖,已知中,,為上一點,以為直徑作與相切于點,連接并延長交的延長線于點.(1)求證:;(2)若,求的長.23.(10分)如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,DE⊥BC,垂足為E.(1)求證:DE是⊙O的切線;(2)若DG⊥AB,垂足為點F,交⊙O于點G,∠A=35°,⊙O半徑為5,求劣弧DG的長.(結果保留π)24.(10分)在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調查統(tǒng)計,下面是他通過收集數據后,繪制的兩幅不完整的統(tǒng)計圖.請你根據圖中提供的信息,解答以下問題:(1)該班共有名學生;(2)補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數為;(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.25.(12分)如圖,是由兩個等邊三角形和一個正方形拼在-起的圖形,請僅用無刻度的直尺按要求畫圖,(1)在圖①中畫一個的角,使點或點是這個角的頂點,且以為這個角的一邊:(2)在圖②畫一條直線,使得.26.國慶期間某旅游點一家商鋪銷售一批成本為每件50元的商品,規(guī)定銷售單價不低于成本價,又不高于每件70元,銷售量y(件)與銷售單價x(元)的關系可以近似的看作一次函數(如圖).(1)請直接寫出y關于x之間的關系式;(2)設該商鋪銷售這批商品獲得的總利潤(總利潤=總銷售額一總成本)為P元,求P與x之間的函數關系式,并寫出自變量x的取值范圍;根據題意判斷:當x取何值時,P的值最大?最大值是多少?(3)若該商鋪要保證銷售這批商品的利潤不能低于400元,求銷售單價x(元)的取值范圍是.(可借助二次函數的圖象直接寫出答案)
參考答案一、選擇題(每題4分,共48分)1、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應成比例可得,得到HC=5,再根據相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.【詳解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四邊形BCED=S△ABC-S△ADE=40.5-18=22.5故答案選:B.【點睛】本題考查相似三角形的性質和判定.2、C【分析】根據特殊角的三角函數值求解即可.【詳解】∵,且∠A是銳角,∴∠A=45°.故選:C.【點睛】本題主要考查了特殊角的三角函數值,熟練掌握相關數值是解題關鍵.3、D【分析】首先過點B作BC垂直O(jiān)A于C,根據AO=4,△ABO是等辺三角形,得出B點坐標,迸而求出k的值.【詳解】解:過點B作BC垂直O(jiān)A于C,
∵點A的坐標是(2,0)
,AO=4,
∵△ABO是等邊三角形∴OC=
2,BC=∴點B的坐標是(2,),把(2,)代入,得:k=xy=故選:D【點睛】本題考查的是利用等邊三角形的性質來確定反比例函數的k值.4、C【分析】本題根據一元二次方程的定義解答.一元二次方程必須滿足四個條件:(1)未知數的最高次數是1;(1)二次項系數不為0;(3)是整式方程;(4)含有一個未知數.由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、a=0,故本選項錯誤;B、有兩個未知數,故本選項錯誤;C、本選項正確;D、含有分式,不是整式方程,故本選項錯誤;故選:C.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數且未知數的最高次數是1.5、D【解析】如圖,∠ABC所在的直角三角形的對邊AD=3,鄰邊BD=4,所以,tan∠ABC=.故選D.6、B【分析】連接BC、OD、OC、BD,過O點作OE⊥CD于E點,先證△COD是等邊三角形,再根據陰影部分的面積是S扇形COD-S△COD計算可得.【詳解】如圖所示,連接BC、OD、OC、BD,過O點作OE⊥CD于E點,
∵∠A=40°,AB=AC,
∴∠ABC=70°,
∵CD∥AB,
∴∠ACD=∠A=40°,
∴∠ABD=∠ACD=40°,
∴∠DBC=30°,
則∠COD=2∠DBC=60°,
又OD=OC,
∴△COD是等邊三角形,∴OD=CD=2,DE=∴
則圖中陰影部分的面積是S扇形COD-S△COD
故選:B.【點睛】本題主要考查扇形面積的計算,解題的關鍵是掌握等腰三角形和等邊三角形的判定與性質、圓周角定理、扇形的面積公式等知識點.7、B【解析】根據斜面坡度為1:2,堤高BC為6米,可得AC=12m,然后利用勾股定理求出AB的長度.【詳解】解:∵斜面坡度為1:2,BC=6m,∴AC=12m,則,故選B.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是根據坡角構造直角三角形,利用三角函數的知識求解.8、B【分析】根據已知的數學模型,同理可得空白小正方形的邊長為,先計算出大正方形的面積=陰影部分的面積+4個小正方形的面積,可得大正方形的邊長,從而得結論.【詳解】x2+6x+m=0,x2+6x=-m,∵陰影部分的面積為36,∴x2+6x=36,4x=6,x=,同理:先構造一個面積為x2的正方形,再以正方形的邊長為一邊向外構造四個面積為x的矩形,得到大正方形的面積為36+()2×4=36+9=45,則該方程的正數解為.故選:B.【點睛】此題考查了解一元二次方程的幾何解法,用到的知識點是長方形、正方形的面積公式,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程.9、C【詳解】畫樹狀圖得:
∵共有6種等可能的結果,兩次抽取的卡片上的數字之積為正偶數的有2種情況,
∴兩次抽取的卡片上的數字之積為正偶數的概率是:.故選C.【點睛】本題考查運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.10、D【分析】根據題意分兩種情況畫出滿足題意的線段A′B′,即可做出判斷.【詳解】解:畫出圖形,如圖所示:
故選D.【點睛】此題考查作圖-位似變換,解題關鍵是畫位似圖形的一般步驟為:①確定位似中心,②分別連接并延長位似中心和能代表原圖的關鍵點;③根據相似比,確定能代表所作的位似圖形的關鍵點;順次連接上述各點,得到放大或縮小的圖形.11、C【分析】根據圓內接四邊形的性質得到∠D=180°-∠B=120°,根據三角形內角和定理計算即可.【詳解】∴∠B=60°,∵四邊形ABCD是圓內接四邊形,∴∠D=180°?∠B=120°,∴∠ACD=180°?∠DAC?∠D=40°,故選C.12、A【分析】連接BE、AD,根據直徑得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度數,根據圓周角定理求出即可.【詳解】解:連接BE、AD,
∵AB是圓的直徑,
∴∠ADB=∠AEB=90°,
∴AD⊥BC,
∵AB=AC,∠C=70°,
∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°
∴=50°.故選A.【點睛】本題考查了圓周角定理,等腰三角形的性質等知識,準確作出輔助線是解題的關鍵.二、填空題(每題4分,共24分)13、或【分析】依據沿過點D的直線折疊,使直角頂點C落在斜邊AB上的點E處,當△BDE是直角三角形時,分兩種情況討論:∠DEB=90°或∠BDE=90°,分別依據勾股定理或者相似三角形的性質,即可得到CD的長【詳解】分兩種情況:①若,則,,連接,則,,,設,則,中,,解得,;②若,則,,四邊形是正方形,,,,,設,則,,,,解得,,綜上所述,的長為或,故答案為或.【點睛】此題考查折疊的性質,勾股定理,全等三角形的判定與性質,解題關鍵在于畫出圖形14、3【分析】根據旋轉的性質,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大?。驹斀狻拷猓焊鶕D的性質,可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案為.【點睛】本題考查了圖形的旋轉變化,旋轉得到的圖形與原圖形全等,解答時要分清旋轉角和對應線段.15、1【分析】作BD⊥x軸于點D,如圖,根據菱形的性質和平行線的性質可得∠BAD=∠COA,于是可得,在Rt△ABD中,由AB=5則可根據勾股定理求出BD和AD的長,進而可得點B的坐標,再把點B坐標代入雙曲線的解析式即可求出k.【詳解】解:作BD⊥x軸于點D,如圖,∵菱形OABC的邊長為5,∴AB=OA=5,AB∥OC,∴∠BAD=∠COA,∴在Rt△ABD中,設BD=3x,AD=4x,則根據勾股定理得:AB=5x=5,解得:x=1,∴BD=3,AD=4,∴OD=9,∴點B的坐標是(9,3),∵的圖象經過頂點B,∴k=3×9=1.故答案為:1.【點睛】本題考查了菱形的性質、解直角三角形、勾股定理和待定系數法求函數的解析式等知識,屬于??碱}型,熟練應用上述知識、正確求出點B的坐標是解題的關鍵.16、【分析】根據直線與兩坐標軸交點坐標的特點可得A、B兩點坐標,由題意可得點M的路徑是以AB的中點N為圓心,AB長的一半為半徑的,求出的長度即可.【詳解】解:∵AM垂直于直線BP,∴∠BMA=90°,∴點M的路徑是以AB的中點N為圓心,AB長的一半為半徑的,連接ON,∵直線y=-x+4與兩坐標軸交A、B兩點,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=,∴ON=,∴故答案為:.【點睛】本題考查了一次函數的綜合題,涉及了兩坐標軸交點坐標及點的運動軌跡,難點在于根據∠BMA=90°,判斷出點M的運動路徑是解題的關鍵,同學們要注意培養(yǎng)自己解答綜合題的能力.17、8.04【分析】先利用古典概型的概率公式求概率,再求區(qū)域A的面積的估計值.【詳解】解:由題意,∵在矩形內隨機產生10000個點,落在區(qū)域A內點的個數平均值為6700個,∴概率P=,∵4×3的矩形面積為12,∴區(qū)域A的面積的估計值為:0.67×12=8.04;故答案為:8.04;【點睛】本題考查古典概型概率公式,考查學生的計算能力,屬于中檔題.18、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標,即可得出答案.【詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設⊙P的半徑為r,根據三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標為(6,4),故答案為:(6,4).【點睛】本題主要考查勾股定理、三角形的內切圓半徑公式及切線長定理,根據三角形的內切圓半徑公式及切線長定理求出點P的坐標是解題的關鍵.三、解答題(共78分)19、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)設點B的坐標為(m,n),則點E的坐標為(m,n),點D的坐標為(m﹣1,n),利用反比例函數圖像上的點的坐標特征可求出m的值,之后進一步求出n的值,然后進一步求解即可;(2)根據三角形的面積公式與矩形的面積公式結合S△PAO=S四邊形OABC即可進一步求出P的縱坐標.①若點P在這個反比例函數的圖象上,利用反比例函數圖象上點的坐標特征可求出點P的坐標;②由點A,B的坐標及點P的總坐標可得出AP≠BP,進而可得出AB不能為對角線,設點P的坐標為(t,4),分AP=AB和BP=AB兩種情況考慮:(i)當AB=AP時,利用兩點間的距離公式可求出t值,進而可得出點P1的坐標,結合P1Q1的長可求出點Q1的坐標;(ii)當BP=AB時,利用兩點間的距離公式可求出t值,進而可得出點P2的坐標,結合P2Q2的長可求出點Q2的坐標.【詳解】(1)設點B的坐標為(m,n),則點E的坐標為(m,n),點D的坐標為(m﹣1,n).∵點D,E在反比例函數y=(k≠0)的圖象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函數的表達式為y=.(2)∵S△PAO=S四邊形OABC,∴OA?yP=OA?OC,∴yP=OC=4.當y=4時,=4,解得:x=,∴若點P在這個反比例函數的圖象上,點P的坐標為(,4).②由(1)可知:點A的坐標為(3,0),點B的坐標為(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能為對角線.設點P的坐標為(t,4).分AP=AB和BP=AB兩種情況考慮(如圖所示):(i)當AB=AP時,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴點P1的坐標為(1,4).又∵P1Q1=AB=5,∴點Q1的坐標為(1,3);(ii)當BP=AB時,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴點P2的坐標為(3﹣2,4).又∵P2Q2=AB=5,∴點Q2的坐標為(3﹣2,﹣1).綜上所述:點Q的坐標為(1,3)或(3﹣2,﹣1).【點睛】本題主要考查了反比例函數的綜合運用,熟練掌握相關概念是解題關鍵.20、(1)(2)①②【分析】(1)求出圓的半徑,再判斷出四邊形OFDE是矩形,然后根據矩形的對角線相等解答即可;(2)①根據線段中點的定義得到OE=OC=OD,根據三角形的內角和得到∠DOE=60°,于是得到結論;②延長CO交⊙O于G,連接DG交AB于P,則PC+PD的最小值等于DG長,解直角三角形即可得到結論.【詳解】解:(1)如圖,連接,∵的直徑,∴圓的半徑為.∵,∴四邊形是矩形,∴.(2)①∵點為的中點,∴,∴,∴,∴劣弧的長度為.②.延長交于點,連接交于點,則的最小值為.∵,,∴,∴的最小值為.【點睛】本題考查了圓周角定理,矩形的判定和性質,軸對稱-最短路線問題,正確的作出輔助線是解題的關鍵.21、(1);(2)【分析】(1)利用概率公式直接計算即可;
(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.22、(1)見解析;(2)【分析】(1)連接OD,根據切線的性質得到OD⊥BC,根據平行線的判定定理得到OD∥AC,求得∠ODE=∠F,根據等腰三角形的性質得到∠OED=∠ODE,等量代換得到∠OED=∠F,于是得到結論;
(2)根據平行得出,再由可得到關于BE的方程,從而得出結論.【詳解】(1)證明:連接,∵切于點,∴.∴.又,∴,∴.∵,∴,∴.∴.(2)解:∵,∴,∴.∵,∴,∴,∴.【點睛】本題考查了切線的性質,平行線的性質,相似三角形的判定和性質,等腰三角形的判定與性質等知識,正確的作出輔助線是解題的關鍵.23、(1)見解析;(2).【分析】(1)連接BD,OD,求出OD∥BC,推出OD⊥DE,根據切線判定推出即可.(2)求出∠BOD=∠GOB,從而求出∠BOD的度數,根據弧長公式求出即可.【詳解】解:(1)證明:連接BD、OD,∵AB是⊙O直徑,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴DO∥BC.∵DE⊥BC,∴DE⊥OD.∵OD為半徑,∴DE是⊙O切線.(2)連接OG,∵DG⊥AB,OB過圓心O,∴弧BG=弧BD.∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=140°.∴劣弧DG的長是.24、(1)50;(2)答案見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度酒店管理合同與酒店用品購銷印花稅繳納范本4篇
- 《微信營銷計》課件
- 《容錯控制及應用》課件
- 2025至2030年子母袋項目投資價值分析報告
- 2025至2030年增強聚丙烯水噴射真空泵項目投資價值分析報告
- 2025至2030年萬能不滅打印臺項目投資價值分析報告
- 2025年FR螺紋果盆項目可行性研究報告
- 2025至2030年校對系統(tǒng)項目投資價值分析報告
- 2025至2030年太陽能真空管項目投資價值分析報告
- 2025年中國PP帶捆包機市場調查研究報告
- 機械點檢員職業(yè)技能知識考試題庫與答案(900題)
- 成熙高級英語聽力腳本
- 北京語言大學保衛(wèi)處管理崗位工作人員招考聘用【共500題附答案解析】模擬試卷
- 肺癌的診治指南課件
- 人教版七年級下冊數學全冊完整版課件
- 商場裝修改造施工組織設計
- (中職)Dreamweaver-CC網頁設計與制作(3版)電子課件(完整版)
- 統(tǒng)編版一年級語文上冊 第5單元教材解讀 PPT
- 中班科學《會說話的顏色》活動設計
- 加減乘除混合運算600題直接打印
- ASCO7000系列GROUP5控制盤使用手冊
評論
0/150
提交評論