版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知傾斜角為的直線與直線垂直,則()A. B. C. D.3.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.4.若函數(shù)滿足,且,則的最小值是()A. B. C. D.5.已知集合,,則()A. B. C. D.6.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.47.已知雙曲線的右焦點(diǎn)為,若雙曲線的一條漸近線的傾斜角為,且點(diǎn)到該漸近線的距離為,則雙曲線的實(shí)軸的長為A. B.C. D.8.若復(fù)數(shù)z滿足,則()A. B. C. D.9.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.10.已知函數(shù)是上的減函數(shù),當(dāng)最小時,若函數(shù)恰有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.11.在區(qū)間上隨機(jī)取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.1112.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.14.甲,乙兩隊參加關(guān)于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運(yùn)動員,乙隊有編號為1,2,3,4的四名運(yùn)動員,若兩隊各出一名隊員進(jìn)行比賽,則出場的兩名運(yùn)動員編號相同的概率為______.15.在中,內(nèi)角的對邊長分別為,已知,且,則_________.16.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)關(guān)于直線的對稱點(diǎn)為,且.若點(diǎn)為的準(zhǔn)線上的任意一點(diǎn),過點(diǎn)作的兩條切線,其中為切點(diǎn).(1)求拋物線的方程;(2)求證:直線恒過定點(diǎn),并求面積的最小值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.19.(12分)已知函數(shù)的定義域為,且滿足,當(dāng)時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實(shí)數(shù)的取值范圍.20.(12分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.21.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若,,證明:.22.(10分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現(xiàn)例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細(xì)胞是由分裂過程產(chǎn)生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨(dú)立的.可以把第代的遺傳設(shè)想為第次實(shí)驗的結(jié)果,每一次實(shí)驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機(jī)選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機(jī)雜交實(shí)驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實(shí)際上是父系和母系中兩個遺傳因子的個數(shù)之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經(jīng)過實(shí)驗觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個體,在進(jìn)行第一代雜交實(shí)驗時,假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(2)中的植物進(jìn)行雜交實(shí)驗,每次雜交前都需要剔除性狀為的個體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機(jī)雜交實(shí)驗長期進(jìn)行下去,會有什么現(xiàn)象發(fā)生?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設(shè)成立;反之,滿足,但,故選A.2、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點(diǎn)睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計算能力,屬于基礎(chǔ)題.3、C【解析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時取最大值,所以.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.4、A【解析】
由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時,取得最小值.故選:A.【點(diǎn)睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.5、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道容易題.6、B【解析】
解出,分別代入選項中的值進(jìn)行驗證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點(diǎn)睛】本題考查了不等式的解法,考查了集合的關(guān)系.7、B【解析】
雙曲線的漸近線方程為,由題可知.設(shè)點(diǎn),則點(diǎn)到直線的距離為,解得,所以,解得,所以雙曲線的實(shí)軸的長為,故選B.8、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.9、D【解析】由題意得,函數(shù)點(diǎn)定義域為且,所以定義域關(guān)于原點(diǎn)對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故選D.10、A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時,,之后將函數(shù)零點(diǎn)個數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時,,函數(shù)恰有兩個零點(diǎn)等價于方程有兩個實(shí)根,等價于函數(shù)與的圖像有兩個交點(diǎn).畫出函數(shù)的簡圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.11、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點(diǎn)有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.12、B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運(yùn)算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.14、【解析】
出場運(yùn)動員編號相同的事件顯然有3種,計算出總的基本事件數(shù),由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運(yùn)動員,乙隊有編號為1,2,3,4的四名運(yùn)動員,出場的兩名運(yùn)動員編號相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場的兩名運(yùn)動員編號相同的概率為.故答案為:【點(diǎn)睛】本題考查求古典概率的概率問題,屬于基礎(chǔ)題.15、4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為416、2【解析】
將已知數(shù)列分組為(1),,共個組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析,最小值為4【解析】
(1)根據(jù)焦點(diǎn)到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點(diǎn).求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意,解得(負(fù)根舍去)∴拋物線的方程為(2)設(shè)點(diǎn),由,即,得∴拋物線在點(diǎn)處的切線的方程為,即∵,∴∵點(diǎn)在切線上,①,同理,②綜合①、②得,點(diǎn)的坐標(biāo)都滿足方程.即直線恒過拋物線焦點(diǎn)當(dāng)時,此時,可知:當(dāng),此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當(dāng)時,最小,且最小值為4【點(diǎn)睛】本小題主要考查點(diǎn)到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點(diǎn)問題,考查拋物線中三角形面積的最值的求法,考查運(yùn)算求解能力,屬于難題.18、(1)當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域為,因為,所以,當(dāng)時,令,得,令,得;當(dāng)時,則,令,得,或,令,得;當(dāng)時,,當(dāng)時,則,令,得;綜上所述,當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時,設(shè),又因為,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因為,所以,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.19、(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè),,所以函數(shù)在上單調(diào)遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設(shè),則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.【點(diǎn)睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運(yùn)用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.20、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點(diǎn):1、解三角形;2、三角恒等變換.21、(1)(2)見證明【解析】
(1)利用零點(diǎn)分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時,不等式可化為.當(dāng)時,,,所以;當(dāng)時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點(diǎn)睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點(diǎn)分段討論法.22、(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】
(1)利用相互獨(dú)立事件的概率乘法公式即可求解.(2)利用相互獨(dú)立事件的概率乘法公式即可求解.(3)由(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年建筑施工春節(jié)節(jié)后復(fù)工復(fù)產(chǎn)工作專項方案
- 《課堂教學(xué)研究的》課件
- 小學(xué)一年級20以內(nèi)數(shù)學(xué)口算強(qiáng)化練習(xí)題
- 《初中幾何課堂文化》課件
- 小學(xué)數(shù)學(xué)蘇教版三年級上冊第一單元《兩三位數(shù)乘一位數(shù)混合運(yùn)算》試題
- 學(xué)案美文如畫點(diǎn)題扣題升格學(xué)案
- 《綜合樓體報告前提》課件
- 《化學(xué)專利撰寫》課件
- 《樓宇設(shè)備監(jiān)控系統(tǒng)》課件
- 廣東省廣州市越秀區(qū)2023-2024學(xué)年高三上學(xué)期期末考試英語試題
- 二次元作業(yè)指導(dǎo)書
- GB/T 15180-2010重交通道路石油瀝青
- GB 19504-2004原產(chǎn)地域產(chǎn)品賀蘭山東麓葡萄酒
- 公路工程質(zhì)量與安全管理課件
- 計算機(jī)基礎(chǔ)知識整理課件
- 高一數(shù)學(xué)必修2《事件的關(guān)系和運(yùn)算》課件
- 四年級道德與法治試卷分析范文(通用5篇)
- 封條模板A4直接打印版
- 電解銅箔制造工藝簡介
- 埋針治療評分標(biāo)準(zhǔn)
- 運(yùn)維服務(wù)目錄
評論
0/150
提交評論