2022-2023學(xué)年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.袋中裝有4個(gè)大小形狀相同的球,其中黑球2個(gè),白球2個(gè),從袋中隨機(jī)抽取2個(gè)球,至少有一個(gè)白球的概率為()A.

B.

C.

D.

2.將邊長(zhǎng)為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積是()A.4πB.3πC.2πD.π

3.A.B.C.

4.A.ac<bc

B.ac2<bc2

C.a-c<b-c

D.a2<b2

5.橢圓x2/2+y2=1的焦距為()A.1

B.2

C.3

D.

6.已知a是函數(shù)f(x)=x3-12x的極小值點(diǎn),則a=()A.-4B.-2C.4D.2

7.已知a=1.20.1,b=ln2,c=5-1/2,則a,b,c的大小關(guān)系是()A.b>a>cB.a>c>bC.a>b>cD.c>a>b

8.隨著互聯(lián)網(wǎng)的普及,網(wǎng)上購(gòu)物已經(jīng)逐漸成為消費(fèi)時(shí)尚,為了解消費(fèi)者對(duì)網(wǎng)上購(gòu)物的滿意情況,某公司隨機(jī)對(duì)4500名網(wǎng)上購(gòu)物消費(fèi)者進(jìn)行了調(diào)查(每名消費(fèi)者限選一種情況回答),統(tǒng)計(jì)結(jié)果如表:根據(jù)表中數(shù)據(jù),估計(jì)在網(wǎng)上購(gòu)物的消費(fèi)者群體中對(duì)網(wǎng)上購(gòu)物“比較滿意”或“滿意”的概率是()A.7/15B.2/5C.11/15D.13/15

9.已知等差數(shù)列中,前15項(xiàng)的和為50,則a8等于()A.6

B.

C.12

D.

10.cos215°-sin215°=()A.

B.

C.

D.-1/2

11.A.B.C.D.

12.若函數(shù)y=√1-X,則其定義域?yàn)锳.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

13.某商品降價(jià)10%,欲恢復(fù)原價(jià),則應(yīng)提升()A.10%

B.20%

C.

D.

14.A.B.C.

15.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,則a,b,c的大小關(guān)系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a

16.設(shè)集合A={x|1≤x≤5},Z為整數(shù)集,則集合A∩Z中元素的個(gè)數(shù)是()A.6B.5C.4D.3

17.已知sin2α<0,且cosa>0,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

18.A.-1B.-4C.4D.2

19.橢圓的焦點(diǎn)坐標(biāo)是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

20.已知雙曲線x2/a2-y2/b2=1的實(shí)軸長(zhǎng)為2,離心率為2,則雙曲線C的焦點(diǎn)坐標(biāo)是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)

二、填空題(10題)21.右圖是一個(gè)算法流程圖.若輸入x的值為1/16,則輸出y的值是____.

22.等差數(shù)列中,a2=2,a6=18,則S8=_____.

23.等比數(shù)列中,a2=3,a6=6,則a4=_____.

24.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點(diǎn)P到直線b的距離為_____.

25.有一長(zhǎng)為16m的籬笆要圍成一個(gè)矩形場(chǎng)地,則矩形場(chǎng)地的最大面積是________m2.

26.等差數(shù)列{an}中,已知a4=-4,a8=4,則a12=______.

27.

28.數(shù)列{an}滿足an+1=1/1-an,a2=2,則a1=_____.

29.已知點(diǎn)A(5,-3)B(1,5),則點(diǎn)P的坐標(biāo)是_____.

30.

三、計(jì)算題(5題)31.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

32.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

33.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

34.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

35.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

四、簡(jiǎn)答題(10題)36.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.

37.證明:函數(shù)是奇函數(shù)

38.已知的值

39.求k為何值時(shí),二次函數(shù)的圖像與x軸(1)有2個(gè)不同的交點(diǎn)(2)只有1個(gè)交點(diǎn)(3)沒有交點(diǎn)

40.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程

41.如圖:在長(zhǎng)方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。

42.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。

43.若α,β是二次方程的兩個(gè)實(shí)根,求當(dāng)m取什么值時(shí),取最小值,并求出此最小值

44.解不等式組

45.簡(jiǎn)化

五、證明題(10題)46.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2

+(y+1)2

=8.

47.若x∈(0,1),求證:log3X3<log3X<X3.

48.己知sin(θ+α)=sin(θ+β),求證:

49.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

50.己知

a

=(-1,2),b

=(-2,1),證明:cos〈a,b〉=4/5.

51.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.

52.△ABC的三邊分別為a,b,c,為且,求證∠C=

53.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

54.

55.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.

六、綜合題(2題)56.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

57.己知點(diǎn)A(0,2),5(-2,-2).(1)求過A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.

參考答案

1.D從中隨即取出2個(gè)球,每個(gè)球被取到的可能性相同,因此所有的取法為,所取出的的2個(gè)球至少有1個(gè)白球,所有的取法為,由古典概型公式可知P=5/6.

2.C立體幾何的側(cè)面積.由幾何體的形成過程所得幾何體為圓柱,底面半徑為1,高為1,其側(cè)面積S=2πrh=2π×1×1=2π.

3.C

4.C

5.B橢圓的定義.a2=1,b2=1,

6.D導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,則x1=-2,x2=2.當(dāng)x∈(-∞,-2),(2,+∞)時(shí),f(x)>0,則f(x)單調(diào)遞增;當(dāng)x∈(―2,2)時(shí),f(x)<0,則f(x)單調(diào)遞減,∴f(x)的極小值點(diǎn)為a=2.

7.C對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單

8.C古典概型的概率公式.由題意,n=4500-200-2100-1000=1200.所以對(duì)網(wǎng)上購(gòu)物“比較滿意”或“滿意”的人數(shù)為1200+2100=3300,由古典概型概率公式可得對(duì)網(wǎng)上購(gòu)物“比較滿意”或“滿意”的概率為3300/4500=11/15.

9.A

10.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,

11.D

12.C

13.C

14.A

15.D數(shù)值的大小關(guān)系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a

16.B集合的運(yùn)算.∵A={x|1≤x≤5},Z為整數(shù)集,則A∩Z={1,2,3,4,5}.

17.D三角函數(shù)值的符號(hào)∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的終邊在第四象限,

18.C

19.D

20.B雙曲線的定義.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴雙曲線C的焦點(diǎn)坐標(biāo)是(±2,0).

21.-2算法流程圖的運(yùn)算.初始值x=1/16不滿足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.

22.96,

23.

,由等比數(shù)列性質(zhì)可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.

24.

,以直線b和A作平面,作P在該平面上的垂點(diǎn)D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).

25.16.將實(shí)際問題求最值的問題轉(zhuǎn)化為二次函數(shù)在某個(gè)區(qū)間上的最值問題.設(shè)矩形的長(zhǎng)為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

26.12.等差數(shù)列的性質(zhì).根據(jù)等差數(shù)列的性質(zhì)有2a8=a4+a12,a12=2a8-a4=12.

27.-6

28.1/2數(shù)列的性質(zhì).a2=1/1-a1=2,所以a1=1/2

29.(2,3),設(shè)P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).

30.2π/3

31.

32.

33.

34.

35.

36.

37.證明:∵∴則,此函數(shù)為奇函數(shù)

38.

∴∴則

39.∵△(1)當(dāng)△>0時(shí),又兩個(gè)不同交點(diǎn)(2)當(dāng)A=0時(shí),只有一個(gè)交點(diǎn)(3)當(dāng)△<0時(shí),沒有交點(diǎn)

40.

41.

42.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

43.

44.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

45.

46.

47.

48.

49.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長(zhǎng)方體的體積減去所截的三棱錐的體積,即

50.

51.

∴PD//平面ACE.

52.

53.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知

:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論