版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知則()A. B. C. D.2.已知M為z軸上一點,且點M到點與點的距離相等,則點M的坐標為()A. B. C. D.3.已知函數(shù)()的最小正周期為,則該函數(shù)的圖象()A.關于直線對稱 B.關于直線對稱C.關于點對稱 D.關于點對稱4.已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.①②④ C.③④ D.①②③④5.在中,且,則等于()A. B. C. D.6.已知點是直線上一動點、是圓的兩條切線,、是切點,若四邊形的最小面積是,則的值為()A. B. C. D.7.設等比數(shù)列的前項和為,若則()A. B. C. D.8.設,則下列結論正確的是()A. B. C. D.9.記復數(shù)的虛部為,已知滿足,則為()A. B. C.2 D.10.已知集合,集合,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等比數(shù)列滿足其公比_________________12.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調(diào)查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內(nèi)的人數(shù)是______13.在單位圓中,面積為1的扇形所對的圓心角的弧度數(shù)為_.14.和的等差中項為__________.15.已知算式,在方框中填入兩個正整數(shù),使它們的乘積最大,則這兩個正整數(shù)之和是___.16.若是等比數(shù)列,,,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過點.(1)若直線與圓相切,求的值;(2)若圓與圓無公共點,求的取值范圍.18.設等差數(shù)列的前項和為,且(是常數(shù),),.(1)求的值及數(shù)列的通項公式;(2)設,求數(shù)列的前項和為.19.已知動點到定點的距離與到定點的距離之比為.(1)求動點的軌跡的方程;(2)過點作軌跡的切線,求該切線的方程.20.已知點,,動點滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結QH并延長交C于點R.(i)設O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時直線l的方程.21.在平面直角坐標系中,點,點P在x軸上(1)若,求點P的坐標:(2)若的面積為10,求點P的坐標.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)條件式,判斷出,,且.由不等式性質(zhì)、基本不等式性質(zhì)或特殊值即可判斷選項.【詳解】因為所以可得,,且對于A,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以A錯誤;對于B,由基本不等式可知,即由于,則,所以B正確;對于C,由條件可得,所以C錯誤;對于D,當時滿足條件,但,所以D錯誤.綜上可知,B為正確選項故選:B【點睛】本題考查了不等式性質(zhì)的綜合應用,根據(jù)基本不等式求最值,屬于基礎題.2、C【解析】
根據(jù)題意先設,再根據(jù)空間兩點間的距離公式,得到,再由點M到點與點的距離相等建立方程求解.【詳解】設根據(jù)空間兩點間的距離公式得因為點M到點與點的距離相等所以解得所以故選:C【點睛】本題主要考查了空間兩點間的距離公式,還考查了運算求解的能力,屬于基礎題.3、D【解析】∵函數(shù)()的最小正周期為,∴,,令,,,,顯然A,B錯誤;令,可得:,,顯然時,D正確故選D4、B【解析】
設數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,逐項驗證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結論.【詳解】設數(shù)列{an}的公比為q(q≠1)①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;綜上,為“保比差數(shù)列函數(shù)”的所有序號為①②④故選:B.【點睛】本題考查新定義,考查對數(shù)的運算性質(zhì),考查等差數(shù)列的判定,考查學生分析解決問題的能力,屬于中檔題.5、A【解析】
在△ABC中,利用正弦定理與兩角和的正弦化簡已知可得,sin(A+C)=sinB,結合a>b,即可求得答案.【詳解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故選A.【點睛】本題考查兩角和與差的正弦函數(shù)與正弦定理的應用,考查了大角對大邊的性質(zhì),屬于中檔題.6、D【解析】
作出圖形,可知,由四邊形的最小面積是,可知此時取最小值,由勾股定理可知的最小值為,即圓心到直線的距離為,結合點到直線的距離公式可求出的值.【詳解】如下圖所示,由切線長定理可得,又,,且,,所以,四邊形的面積為面積的兩倍,圓的標準方程為,圓心為,半徑為,四邊形的最小面積是,所以,面積的最小值為,又,,由勾股定理,當直線與直線垂直時,取最小值,即,整理得,,解得.故選:D.【點睛】本題考查由四邊形面積的最值求參數(shù)的值,涉及直線與圓的位置關系的應用,解題的關鍵就是確定動點的位置,考查分析問題和解決問題的能力,屬于中等題.7、B【解析】
根據(jù)等比數(shù)列中前項和的“片段和”的性質(zhì)求解.【詳解】由題意得,在等比數(shù)列中,成等比數(shù)列,即成等比數(shù)列,∴,解得.故選B.【點睛】設等比數(shù)列的前項和為,則仍成等比數(shù)列,即每個項的和仍成等比數(shù)列,應用時要注意使用的條件是數(shù)列的公比.利用此結論解題可簡化運算,提高解題的效率.8、B【解析】
利用不等式的性質(zhì),即可求解,得到答案.【詳解】由題意知,根據(jù)不等式的性質(zhì),兩邊同乘,可得成立.故選:B.【點睛】本題主要考查了不等式的性質(zhì)及其應用,其中解答中熟記不等式的基本性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、A【解析】
根據(jù)復數(shù)除法運算求得,從而可得虛部.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)虛部的求解問題,關鍵是通過復數(shù)除法運算得到的形式.10、D【解析】
先化簡集合,再利用交集運算法則求.【詳解】,,,故選:D.【點睛】本題考查集合的運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
觀察式子,將兩式相除即可得到答案.【詳解】根據(jù)題意,可知,于是.【點睛】本題主要考查等比數(shù)列公比的相關計算,難度很小.12、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣13、2【解析】試題分析:由題意可得:.考點:扇形的面積公式.14、【解析】
設和的等差中項為,利用等差中項公式可得出的值.【詳解】設和的等差中項為,由等差中項公式可得,故答案為:.【點睛】本題考查等差中項的求解,解題時要充分利用等差中項公式來求解,考查計算能力,屬于基礎題.15、.【解析】
設填入的數(shù)從左到右依次為,則,利用基本不等式可求得的最大值及此時的和.【詳解】設在方框中填入的兩個正整數(shù)從左到右依次為,則,于是,,當且僅當時取等號,此時.故答案為:15【點睛】本題考查基本不等式成立的條件,屬于基礎題.16、【解析】
根據(jù)等比數(shù)列的通項公式求解公比再求和即可.【詳解】設公比為,則.故故答案為:【點睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或.(2)【解析】試題分析:由題意可得圓的方程為.(1)由圓心到直線的距離等于半徑可得,解得或,即為所求.(2)由圓與圓無公共點可得兩圓內(nèi)含或外離,根據(jù)圓心距和兩半徑的關系得到不等式即可得到所求范圍.試題解析:將點的坐標代入,可得,所以圓的方程為,即,故圓心為,半徑.(1)因為直線與圓相切,所以圓心到直線的距離等于圓的半徑,即,整理得,解得或.(2)圓的圓心為,則,由題意可得圓與圓內(nèi)含或外離,所以或,解得或.所以的取值范圍為.18、(1);(2)【解析】
(1)先令得出,再令,利用作差法得出,于此得出,可由和的值求出等差數(shù)列的公差,于此可求出等差數(shù)列的通項公式;(2)先求出數(shù)列的通項公式,再利用錯位相減法求出數(shù)列的前項和.【詳解】(1)因為,所以當時,,解得.當時,,即.解得,所以,解得,則.數(shù)列的公差.所以;(2)因為,所以,①,②由①-②可得,所以.【點睛】本題考查等差數(shù)列通項的求解,考查錯位相減法求和,解題時要注意錯位相減求和法所適用數(shù)列通項的結構類型,要熟練錯位相減法求和的基本步驟,難點在于計算量較大,屬于中等題.19、(1),(2)或【解析】
(1)首先根據(jù)題意列出等式,再化簡即可得到軌跡方程.(2)首先根據(jù)題意設出切線方程,再利用圓心到切線的距離等于半徑即可求出切線方程.【詳解】(1)設,有題知,,所以點的軌跡的方程:.(2)當切線斜率不存在時,切線為圓心到的距離,舍去.當切線斜率存在時,設切線方程為.圓心到切線的距離,解得:或.即切線方程為:或.【點睛】本題第一問考查了圓的軌跡方程,第二問考查了直線與圓的位置關系中的切線問題,屬于中檔題.20、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解析】
(1)根據(jù)題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點坐標,表示出QH直線方程,采用點到直線距離公式求解;利用圓的幾何關系,表示出三角形的底和高,再結合函數(shù)最值問題進行求解【詳解】(1)由及兩點距離公式,有,化簡整理得,.所以曲線C的方程為;(2)(i)設直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當時.,所以,(ii)過O作于D,則D為QR中點,且由(i)知,,,又由,故的面積,由,有,所以,當且僅當時,等號成立,且此時由(i)有,即.綜上,的面積最大值為的面積最大值為,且當面積最大時直線的方程為.【點睛】直線與圓的綜合類題型常采用點到直線距離公式、圓內(nèi)構造的直角三角形,將代數(shù)問題與幾何問題進行有效結
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版小學語文三年級下冊第六單元教材解讀及教學建議
- 湖南省永州市藍山縣第二中學2024-2025學年高一上學期期中考試語文答案
- 河北省申論模擬10
- 河北省公務員面試模擬54
- 黑龍江公務員面試模擬95
- 地方公務員遼寧申論61
- 山西公務員面試模擬53
- 第七章兒童心理發(fā)展的幾種重要理論2(教案)-《幼兒心理學》(人教版第二版)
- 福建公務員面試模擬6
- 江西申論模擬96
- 實驗二 油菜考種
- 胃癌淋巴結清掃ppt課件(PPT 39頁)
- 汽車交貨方案及質(zhì)保措施
- 06竣工財務決算審計工作底稿(試行)
- 某公司審計財務舞弊案例分析報告
- 人教版九年級初三上冊期中考試化學試卷
- 電加熱管制作工藝的設計
- 雙港垃圾焚燒發(fā)電廠工藝介紹
- 植物體的結構層次通用課件
- 編帶包裝檢驗判定標準
- 新譯林版六年級上冊英語知識點歸納總結
評論
0/150
提交評論