基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究_第1頁
基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究_第2頁
基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究_第3頁
基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究_第4頁
基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

基于改進(jìn)深度學(xué)習(xí)的醫(yī)學(xué)影像肺癌識(shí)別算法研究摘要

肺癌是一種常見的惡性腫瘤,早期發(fā)現(xiàn)和診斷對(duì)治療和預(yù)后的影響非常重要。醫(yī)學(xué)影像學(xué)成為肺癌診斷的重要手段之一。本文利用醫(yī)學(xué)影像肺癌診斷中常用的CT影像數(shù)據(jù),基于改進(jìn)深度學(xué)習(xí)的算法進(jìn)行研究。首先,分析常用的卷積神經(jīng)網(wǎng)絡(luò)(CNN)的局限性,提出了改進(jìn)后的卷積神經(jīng)網(wǎng)絡(luò)(improvedCNN)算法。然后,在處理醫(yī)學(xué)影像數(shù)據(jù)時(shí),針對(duì)噪聲和數(shù)據(jù)維度較高的問題,提出了一種基于主成分分析(PCA)和小波變換(Wavelet)的數(shù)據(jù)預(yù)處理方法,以提升實(shí)驗(yàn)結(jié)果的準(zhǔn)確度和魯棒性。實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法相比,improvedCNN算法在肺癌識(shí)別中的準(zhǔn)確性和穩(wěn)定性均有所提升。同時(shí),所提出的數(shù)據(jù)預(yù)處理方法也能夠有效地降低噪聲和提升預(yù)測(cè)能力。

關(guān)鍵詞:醫(yī)學(xué)影像、肺癌識(shí)別、卷積神經(jīng)網(wǎng)絡(luò)、PCA、Wavelet

Abstract

Lungcancerisacommonmalignanttumor,anditsearlydetectionanddiagnosishaveasignificantimpactonthetreatmentandprognosis.Medicalimaginghasbecomeanimportantmeansforlungcancerdiagnosis.Inthispaper,weproposealungcancerrecognitionalgorithmbasedonimproveddeeplearningusingCTimagescommonlyusedinmedicalimaging.Firstly,weanalyzethelimitationsoftheconventionalconvolutionalneuralnetwork(CNN),andproposeanimprovedCNNalgorithmtoovercometheselimitations.Secondly,toaddresstheissueofhighnoiseanddimensionalityofmedicalimagedata,weproposeadatapreprocessingmethodbasedonprincipalcomponentanalysis(PCA)andwavelettransformtoimprovetheaccuracyandrobustnessoftheexperimentalresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilityinlungcancerrecognitioncomparedtothetraditionalCNNalgorithm.Moreover,theproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancepredictionability.

Keywords:medicalimaging;lungcancerrecognition;convolutionalneuralnetwork;PCA;WaveletMedicalimagingplaysavitalroleintheearlydetectionanddiagnosisoflungcancer.However,theaccuracyandrobustnessoflungcancerrecognitionalgorithmsdependonthequalityandcomplexityofthemedicalimages.Therefore,thereisaneedforadvanceddatapreprocessingtechniquestoimprovetheperformanceoflungcancerrecognitionalgorithms.

Inthisstudy,weproposeanoveldatapreprocessingmethodthatcombinesprincipalcomponentanalysis(PCA)andwavelettransformtoenhancetheaccuracyandstabilityoflungcancerrecognitionalgorithms.PCAisusedtoreducethedimensionalityoftheinputimagesandremoveredundantinformation,whilewavelettransformisusedtodecomposetheinputimagesintomultiplefrequencybandsandextractrelevantfeatures.

Toevaluatetheeffectivenessofourproposedmethod,weemployaconvolutionalneuralnetwork(CNN)algorithmforlungcancerrecognition.WeusebothtraditionalCNNandimprovedCNNalgorithmstocomparetheaccuracyandstabilityoftherecognitionresults.TheexperimentalresultsshowthattheimprovedCNNalgorithmachievesbetteraccuracyandstabilitythanthetraditionalCNNalgorithm.Moreover,ourproposeddatapreprocessingmethodcaneffectivelyreducenoiseandenhancethepredictionabilityofthelungcancerrecognitionalgorithm.

Inconclusion,ourproposeddatapreprocessingmethodthatcombinesPCAandwavelettransformisaneffectiveapproachtoenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms.ThismethodcanbefurtherappliedtoothermedicalimagingproblemstoimprovetheperformanceofexistingalgorithmsFurthermore,thesuccessofourmethodhighlightstheimportanceofdatapreprocessinginmedicalimageanalysis.Preprocessingtechniquescansignificantlyaffecttheaccuracyandrobustnessofmedicalimagerecognitionalgorithms,asmedicalimagesareoftensubjecttovariationsinresolution,noise,andcontrast.Assuch,combiningmultiplepreprocessingtechniques,suchaswavelettransformandPCA,canhelptoaddresstheseissuesandproducemoreaccuratepredictions.

Movingforward,thereisroomforfurtherinvestigationandrefinementofourproposedmethod.Forinstance,exploringotherdimensionalityreductionalgorithms,suchast-SNEorLLE,mayyieldevenbetterresults.Additionally,applyingdifferentwaveletfunctionsorscalingfactorscouldimprovetheeffectivenessofwavelettransforminreducingnoiseandenhancingfeaturesinmedicalimages.

Overall,ourstudydemonstratesthepotentialofcombiningPCAandwavelettransformformedicalimagerecognition.Byutilizingthesetechniques,ourproposeddatapreprocessingmethodcanenhancetheaccuracyandrobustnessoflungcancerrecognitionalgorithms,pavingthewayforimproveddiagnosesandtreatmentplansInadditiontothemethodsdiscussedabove,thereareseveralothertechniquesthatcanbeusedtoimprovemedicalimagerecognition.Oneapproachistousedeeplearningalgorithms,whichhaveshownpromisingresultsinavarietyofmedicalimagingapplications.Deeplearningalgorithmsuseartificialneuralnetworkstoautomaticallylearnfeaturesfromthedata,andhavebeenshowntobeeffectiveintaskssuchastumordetectionandsegmentation.

Anotherapproachistoincorporateaprioriknowledgeintotherecognitionprocess.Forexample,inlungcancerrecognition,priorknowledgeabouttheshapeandtextureoflungnodulescanbeusedtoimprovetheaccuracyoftherecognitionalgorithm.Thiscanbeachievedthroughtheuseofshapeandtextureanalysistechniques,suchasfractalanalysisorgray-levelco-occurrencematrixanalysis.

Finally,itisimportanttoconsiderthepracticallimitationsofmedicalimagerecognitionalgorithms.Onemajorlimitationistheavailabilityoflarge,high-qualitydatasetsfortrainingandtesting.Withoutaccesstolargedatasets,itcanbedifficulttodevelopaccurateandrobustrecognitionalgorithms.Additionally,thecomputationalresourcesrequiredtotrainandtestthesealgorithmscanbesubstantial,whichmaylimittheirpracticalapplicationinclinicalsettings.

Despitetheselimitations,advancesinmedicalimagerecognitionhavethepotentialtorevolutionizethefieldofdiagnosisandtreatment.Bycombiningadvancedimagingtechnologieswithsophisticatedanalys

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論