版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)研究
摘要:
輪對激光光條圖像的質(zhì)量直接影響到鐵路運(yùn)輸?shù)陌踩托?,因此對其進(jìn)行修復(fù)具有重要意義。本文提出了一種基于深度學(xué)習(xí)的輪對激光光條圖像修復(fù)方法。首先,我們收集了大量原始和瑕疵圖像,用于構(gòu)建訓(xùn)練和測試數(shù)據(jù)集。接著,利用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像修復(fù),該網(wǎng)絡(luò)由編碼器、解碼器和反卷積操作組成。在訓(xùn)練階段,我們采用自編碼器和殘差學(xué)習(xí)以增強(qiáng)網(wǎng)絡(luò)的修復(fù)效果。在測試階段,根據(jù)網(wǎng)絡(luò)的輸出進(jìn)行自適應(yīng)像素分類,通過分別對不同的像素分配優(yōu)先級來保證修復(fù)效果優(yōu)良。實(shí)驗(yàn)結(jié)果表明,本文提出的方法可以有效地修復(fù)輪對激光光條圖像,提高了圖像質(zhì)量及細(xì)節(jié)信息的恢復(fù)能力。
關(guān)鍵詞:輪對激光光條圖像,深度學(xué)習(xí),自編碼器,殘差學(xué)習(xí),自適應(yīng)像素分類
Abstract:
Thequalityofthewheel-raillaserstripeimagedirectlyaffectsthesafetyandefficiencyofrailwaytransportation.Therefore,itsrepairisofgreatsignificance.Inthispaper,weproposeadeeplearningbasedmethodforrepairingwheel-raillaserstripeimages.Firstly,wecollectedalargenumberoforiginalanddefectiveimagestoconstructtrainingandtestingdatasets.Then,aconvolutionalneuralnetworkisusedforimagerestoration,whichconsistsofanencoder,adecoder,anddeconvolutionoperations.Inthetrainingphase,weusetheautoencoderandresiduallearningtoenhancetherestorationeffectofthenetwork.Inthetestingphase,weadaptivelyclassifypixelsbasedonthenetworkoutput,andassigndifferentprioritiestodifferentpixelstoensuretherestorationeffectisgood.Experimentalresultsshowthattheproposedmethodcaneffectivelyrepairwheel-raillaserstripeimagesandimprovetheabilitytorestoreimagequalityanddetailinformation.
Keywords:wheel-raillaserstripeimage,deeplearning,autoencoder,residuallearning,adaptivepixelclassificationRailwaytransportationplaysasignificantroleinmoderntransportinfrastructure,andthesafetyandreliabilityofrailwaysystemsareessentialfactors.Onekeycomponentofrailwaysystemsisthewheel-railsystem,andthemonitoringofthewheel-railinterfaceisbecomingincreasinglyimportant.Laser-basedopticalmeasurementtechnologyhasbeenwidelyusedtomonitorthegeometryofrailtracks,includingthewheel-railcontactarea.Wheel-raillaserstripeimagingtechnologycanbeusedtoextractthecontactgeometryinformation,andithasbeenappliedinmanyrailwayinspectionscenarios.
However,thewheel-raillaserstripeimagescanbeseriouslydegradedbyvariousfactors,includingenvironmentalchanges,sensornoise,andotherartifacts.Thedegradedimagescanaffecttheaccuracyandreliabilityofrailmonitoringandcanresultinmisleadingresults,whichcouldimpactthesafetyoftherailwaysystem.Therefore,itiscrucialtodevelopeffectivemethodsforrestoringthedegradedwheel-raillaserstripeimages.
Inrecentyears,deeplearningmethodshaveachievedremarkablesuccessinvariousimagerestorationtasks,includingimagedenoising,super-resolution,andimageinpainting.Inthisstudy,weproposeanautoencoder-baseddeeplearningmethodforwheel-raillaserstripeimagerestoration.Inparticular,wedesignaresidualautoencodernetworkthatcaneffectivelycapturethecompleximagefeaturesandrestorethedegradedimagedetails.
Toovercomethelimitationsoftraditionaldeeplearningapproaches,weproposeanadaptivepixelclassificationschemetoprioritizetherestorationofdifferentimagepixels.Theproposedschemecanassignhigherprioritiestoimagepixelswithmoresignificantrestorationpotential,therebyensuringtherestorationqualityandretainingthecrucialinformationintheoriginalimage.
Experimentalresultsshowthattheproposedmethodcaneffectivelyrestorethedegradedwheel-raillaserstripeimagesandimprovetheimagequalityanddetailinformation.Ourapproachoutperformsotherstate-of-the-artimagerestorationmethodsintermsofrestorationaccuracyandcomputationalefficiency.Overall,ourproposedmethodcancontributetothesafeandreliableoperationofrailwaysystemsbyenhancingrailmonitoringaccuracyandreliabilityMoreover,theproposedmethodcanalsohavepotentialapplicationsinotherfields,suchasrobotics,manufacturing,andmedicalimaging,wherelaserstripeprojectioniscommonlyusedfor3Dsurfacemeasurementandinspection.Byrestoringthedegradedlaserstripeimages,ourapproachcanhelpimprovetheaccuracyandreliabilityofsurfacereconstructionanddefectdetection,whicharecriticalforqualitycontrolandproductevaluation.
Inadditiontotheproposedmethod,therearealsosomefutureresearchdirectionsthatcanbeexploredtofurtherimprovetheperformanceoflaserstripeimagerestoration.Forexample,incorporatingmorepriorknowledgeorconstraintsintotheimagerestorationprocess,suchasthegeometricstructureofthelaserstripeorthestatisticalcharacteristicsofthenoise,canhelpenhancetherestorationaccuracyandrobustness.Moreover,multi-viewormulti-frequencylaserstripeprojectioncanbeusedtoobtainmoreinformationaboutthesurfacetextureandshape,whichcanbeexploitedforbetterimagerestorationandfusion.
Overall,theproposedmethodpresentedinthispaperservesasapromisingsolutionforrestoringthedegradedwheel-raillaserstripeimages,whichcansignificantlybenefittherailwayindustrybyimprovingthesafety,efficiency,andreliabilityofrailmonitoringandmaintenance.TheproposedmethodcanalsohavebroaderapplicationsinotherfieldsthatinvolvelaserstripeprojectionandimagerestorationInadditiontotheapplicationsmentionedabove,theproposedmethodcanalsobeappliedtoothertypesoflaserstripeimages,suchasthoseproducedinmanufacturingandindustrialsettings.Forexample,laserstripesensorsarecommonlyusedin3Dscanningandmeasurement,wheretheycaptureobjectsurfaceinformationforinspectionandanalysis.However,thecapturedlaserstripeimagescanbeaffectedbyvariousfactorssuchasnoise,occlusion,andgeometricdistortion,whichcandegradethequalityoftheacquireddata.
Theproposedmethodcanbeadaptedtoaddressthesechallengesandenhancetheaccuracyandreliabilityof3Dmeasurementandinspection.Byeffectivelyremovingnoiseanddistortionfromthelaserstripeimages,theproposedmethodcanhelptoimprovetheprecisionandcompletenessofobjectsurfacereconstruction,whichiscriticalforqualitycontrolanddefectdetectioninmanufacturingandindustrialprocesses.
Moreover,theproposedmethodcanbeintegratedwithotherimageprocessingtechniques,suchasfeaturedetectionandtracking,toenablereal-timeanalysisandfeedbackindynamicenvironments.Forinstance,inroboticsandautomation,laserstripesensorscanbeusedtoguidethemotionandmanipulationofroboticarmsandtools.Theproposedmethodcanhelptoimprovetheaccuracyandrobustnessofthesensingandcontrolsystem,byprovidingreliableandaccuratefeedbackoftheobjectsurfacecharacteristics
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 利邦科技發(fā)展現(xiàn)狀及未來趨勢分析
- 關(guān)于一學(xué)一做的教育課件
- 2024年甘肅客運(yùn)駕駛員考試試題答案
- 2024年渭南小型客運(yùn)從業(yè)資格證2024年考試題
- 2024年鷹潭小型客運(yùn)從業(yè)資格證理論考題
- 幸福在那里課件
- 2025屆河南省十所重點(diǎn)名校高三生物第一學(xué)期期末質(zhì)量檢測模擬試題含解析
- 2025屆江西省九江市重點(diǎn)中學(xué)生物高二上期末檢測模擬試題含解析
- 山東省菏澤市鄄城縣第一中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析
- 2025屆甘肅省白銀市會(huì)寧四中生物高二上期末經(jīng)典模擬試題含解析
- 2024年礦業(yè)權(quán)評估師考試(重點(diǎn))題庫200題(含答案解析)
- 中藥細(xì)辛課件
- 2023-2024學(xué)年山東省淄博市張店區(qū)八年級(上)期中英語試卷(五四學(xué)制)
- 《屠呦呦人物介紹班會(huì)》班會(huì)課件
- 2024年云南省大數(shù)據(jù)限公司招聘81人高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 護(hù)士服務(wù)規(guī)范與禮儀(護(hù)士禮儀服務(wù)規(guī)范)培訓(xùn)課件
- 質(zhì)量通病防治措施手冊
- 2024入團(tuán)考試題庫含答案(完整版)
- MOOC 旅游學(xué)概論-中國地質(zhì)大學(xué)(武漢) 中國大學(xué)慕課答案
- 圍手術(shù)期血糖管理指南
- 國家開放大學(xué)《民法學(xué)(1)》案例練習(xí)參考答案
評論
0/150
提交評論