SS技術(shù)的發(fā)展和應(yīng)用_第1頁
SS技術(shù)的發(fā)展和應(yīng)用_第2頁
SS技術(shù)的發(fā)展和應(yīng)用_第3頁
SS技術(shù)的發(fā)展和應(yīng)用_第4頁
SS技術(shù)的發(fā)展和應(yīng)用_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

放電等離子燒結(jié)技術(shù)的發(fā)展和應(yīng)用1前言隨著高新技術(shù)產(chǎn)業(yè)的發(fā)展,新型材料特別是新型功能材料的種類和需求量不斷增加,材料新的功能呼喚新的制備技術(shù)。放電等離子燒結(jié)(SparkPlasmaSintering,簡稱SPS)是制備功能材料的一種全新技術(shù),它具有升溫速度快、燒結(jié)時間短、組織結(jié)構(gòu)可控、節(jié)能環(huán)保等鮮明特點,可用來制備金屬材料、陶瓷材料、復合材料,也可用來制備納米塊體材料、非晶塊體材料、梯度材料等。2國內(nèi)外SPS的發(fā)展與應(yīng)用狀況SPS技術(shù)是在粉末顆粒間直接通入脈沖電流進行加熱燒結(jié),因此在有的文獻上也被稱為等離子活化燒結(jié)或等離子輔助燒結(jié)(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美國科學家就提出了脈沖電流燒結(jié)原理,但是直到1965年,脈沖電流燒結(jié)技術(shù)才在美、日等國得到應(yīng)用。日本獲得了SPS技術(shù)的專利,但當時未能解決該技術(shù)存在的生產(chǎn)效率低等問題,因此SPS技術(shù)沒有得到推廣應(yīng)用。1988年日本研制出第一臺工業(yè)型SPS裝置,并在新材料研究領(lǐng)域內(nèi)推廣應(yīng)用。1990年以后,日本推出了可用于工業(yè)生產(chǎn)的SPS第三代產(chǎn)品,具有10~100t的燒結(jié)壓力和脈沖電流5000~8000A。最近又研制出壓力達500t,脈沖電流為25000A的大型SPS裝置。由于SPS技術(shù)具有快速、低溫、高效率等優(yōu)點,近幾年國外許多大學和科研機構(gòu)都相繼配備了SPS燒結(jié)系統(tǒng),并利用SPS進行新材料的研究和開發(fā)[3]。1998年瑞典購進SPS燒結(jié)系統(tǒng),對碳化物、氧化物、生物陶瓷等材料進行了較多的研究工作[4]。國內(nèi)近三年也開展了用SPS技術(shù)制備新材料的研究工作[1,3],引進了數(shù)臺SPS燒結(jié)系統(tǒng),主要用來燒結(jié)納米材料和陶瓷材料[5~8]。SPS作為一種材料制備的全新技術(shù),已引起了國內(nèi)外的廣泛重視。3SPS的燒結(jié)原理31等離子體和等離子加工技術(shù)[9,10]SPS是利用放電等離子體進行燒結(jié)的。等離子體是物質(zhì)在高溫或特定激勵下的一種物質(zhì)狀態(tài),是除固態(tài)、液態(tài)和氣態(tài)以外,物質(zhì)的第四種狀態(tài)。等離子體是電離氣體,由大量正負帶電粒子和中性粒子組成,并表現(xiàn)出集體行為的一種準中性氣體。等離子體是解離的高溫導電氣體,可提供反應(yīng)活性高的狀態(tài)。等離子體溫度4000~10999℃,其氣態(tài)分子和原子處在高度活化狀態(tài),而且等離子氣體內(nèi)離子化程度很高,這些性質(zhì)使得等離子體成為一種非常重要的材料制備和加工技術(shù)。等離子體加工技術(shù)已得到較多的應(yīng)用,例如等離子體CVD、低溫等離子體PVD以及等離子體和離子束刻蝕等。目前等離子體多用于氧化物涂層、等離子刻蝕方面,在制備高純碳化物和氮化物粉體上也有一定應(yīng)用。而等離子體的另一個很有潛力的應(yīng)用領(lǐng)域是在陶瓷材料的燒結(jié)方面[1]。產(chǎn)生等離子體的方法包括加熱、放電和光激勵等。放電產(chǎn)生的等離子體包括直流放電、射頻放電和微波放電等離子體。SPS利用的是直流放電等離子體。32SPS裝置和燒結(jié)基本原理SPS裝置主要包括以下幾個部分:軸向壓力裝置;水冷沖頭電極;真空腔體;氣氛控制系統(tǒng)(真空、氬氣);直流脈沖電源及冷卻水、位移測量、溫度測量和安全等控制單元。SPS的基本結(jié)構(gòu)如圖1所示。SPS與熱壓(HP)有相似之處,但加熱方式完全不同,它是一種利用通-斷直流脈沖電流直接通電燒結(jié)的加壓燒結(jié)法。通-斷式直流脈沖電流的主要作用是產(chǎn)生放電等離子體、放電沖擊壓力、焦耳熱和電場擴散作用[11]。SPS燒結(jié)時脈沖電流通過粉末顆粒如圖2所示。在SPS燒結(jié)過程中,電極通入直流脈沖電流時瞬間產(chǎn)生的放電等離子體,使燒結(jié)體內(nèi)部各個顆粒均勻地自身產(chǎn)生焦耳熱并使顆粒表面活化。與自身加熱反應(yīng)合成法(SHS)和微波燒結(jié)法類似,SPS是有效利用粉末內(nèi)部的自身發(fā)熱作用而進行燒結(jié)的。這種放電直接加熱法,熱效率極高,放電點的彌散分布能夠?qū)崿F(xiàn)均勻加熱,因而容易制備出均質(zhì)、致密、高質(zhì)量的燒結(jié)體。SPS燒結(jié)過程可以看作是顆粒放電、導電加熱和加壓綜合作用的結(jié)果。除加熱和加壓這兩個促進燒結(jié)的因素外,在SPS技術(shù)中,顆粒間的有效放電可產(chǎn)生局部高溫,可以使表面局部熔化、表面物質(zhì)剝落;高溫等離子的濺射和放電沖擊清除了粉末顆粒表面雜質(zhì)(如去除表層氧化物等)和吸附的氣體。電場的作用是加快擴散過程[1,9,12]。4SPS的工藝優(yōu)勢SPS的工藝優(yōu)勢十分明顯:加熱均勻,升溫速度快,燒結(jié)溫度低,燒結(jié)時間短,生產(chǎn)效率高,產(chǎn)品組織細小均勻,能保持原材料的自然狀態(tài),可以得到高致密度的材料,可以燒結(jié)梯度材料以及復雜工件等[3,11]。與HP和HIP相比,SPS裝置操作簡單、不需要專門的熟練技術(shù)。文獻[11]報道,生產(chǎn)一塊直徑100mm、厚17mm的ZrO2(3Y)/不銹鋼梯度材料(FGM)用的總時間是58min,其中升溫時間28min、保溫時間5min和冷卻時間25min。與HP相比,SPS技術(shù)的燒結(jié)溫度可降低100~200℃[13]。5SPS在材料制備中的應(yīng)用目前在國外,尤其在日本開展了較多用SPS制備新材料的研究,部分產(chǎn)品已投入生產(chǎn)。SPS可加工的材料種類如表1所示。除了制備材料外,SPS還可進行材料連接,如連接MoSi2與石墨[14],ZrO2/Cermet/Ni等[15]。近幾年,國內(nèi)外用SPS制備新材料的研究主要集中在:陶瓷、金屬陶瓷、金屬間化合物,復合材料納米材料和功能材料等方面。其中研究最多的是功能材料,它包括熱電材料[16]、磁性材料[17],功能梯度材料[18],復合功能材料[19]和納米功能材料[20]等。對SPS制備非晶合金、形狀記憶合金[21]、金剛石等也作了嘗試,取得了較好的結(jié)果。51功能梯度材料功能梯度材料(FGM)的成分是梯度變化的,各層的燒結(jié)溫度不同,利用傳統(tǒng)的燒結(jié)方法難以一次燒成。利用CVD、PVD等方法制備梯度材料,成本很高,也很難實現(xiàn)工業(yè)化。采用階梯狀的石墨模具,由于模具上、下兩端的電流密度不同,因此可以產(chǎn)生溫度梯度。利用SPS在石墨模具中產(chǎn)生的梯度溫度場,只需要幾分鐘就可燒結(jié)好成分配比不同的梯度材料。目前SPS成功制備的梯度材料有:不銹鋼/ZrO2;Ni/ZrO2;Al/高聚物;Al/植物纖維;PSZ/Ti等梯度材料。在自蔓延燃燒合成(SHS)中,電場具有較大激活效應(yīng)和作用,特別是場激活效應(yīng)可以使以前不能合成的材料也能成功合成,擴大了成分范圍,并能控制相的成分,不過得到的是多孔材料,還需要進一步加工提高致密度。利用類似于SHS電場激活作用的SPS技術(shù),對陶瓷、復合材料和梯度材料的合成和致密化同時進行,可得到65nm的納米晶,比SHS少了一道致密化工序[22]。利用SPS可制備大尺寸的FGM,目前SPS制備的尺寸較大的FGM體系是ZrO2(3Y)/不銹鋼圓盤,尺寸已達到100mm×17mm[23]。用普通燒結(jié)和熱壓WC粉末時必須加入添加劑,而SPS使燒結(jié)純WC成為可能。用SPS制備的WC/Mo梯度材料的維氏硬度(HV)和斷裂韌度分別達到了24GPa和6MPa·m1/2,大大減輕由于WC和Mo的熱膨脹不匹配而導致熱應(yīng)力引起的開裂[24]。52熱電材料由于熱電轉(zhuǎn)換的高可靠性、無污染等特點,最近熱電轉(zhuǎn)換器引起了人們極大的興趣,并研究了許多熱電轉(zhuǎn)換材料。經(jīng)文獻檢索發(fā)現(xiàn),在SPS制備功能材料的研究中,對熱電材料的研究較多。(1)熱電材料的成分梯度化是目前提高熱電效率的有效途徑之一。例如,成分梯度的βFeSi2就是一種比較有前途的熱電材料,可用于200~900℃之間進行熱電轉(zhuǎn)換。βFeSi2沒有毒性,在空氣中有很好的抗氧化性,并且有較高的電導率和熱電功率。熱電材料的品質(zhì)因數(shù)越高(Z=α2/kρ,其中Z是品質(zhì)因數(shù),α為Seebeck系數(shù),k為導熱系數(shù),ρ為材料的電阻率),其熱電轉(zhuǎn)換效率也越高。實驗表明,采用SPS制備的成分梯度的βFeSix(Si含量可變),比βFeSi2的熱電性能大為提高[25]。這方面的例子還有Cu/Al2O3/Cu[26],MgFeSi2[27],βZn4Sb3[28],鎢硅化物[29]等。(2)用于熱電致冷的傳統(tǒng)半導體材料不僅強度和耐久性差,而且主要采用單向生長法制備,生產(chǎn)周期長、成本高。近年來有些廠家為了解決這個問題,采用燒結(jié)法生產(chǎn)半導體致冷材料,雖改善了機械強度和提高了材料使用率,但是熱電性能遠遠達不到單晶半導體的性能?,F(xiàn)在采用SPS生產(chǎn)半導體致冷材料,在幾分鐘內(nèi)就可制備出完整的半導體材料,而晶體生長法卻要十幾個小時。SPS制備半導體熱電材料的優(yōu)點是,可直接加工成圓片,不需要單向生長法那樣的切割加工,節(jié)約了材料,提高了生產(chǎn)效率。熱壓和冷壓-燒結(jié)的半導體性能低于晶體生長法制備的性能。現(xiàn)用于熱電致冷的半導體材料的主要成分是Bi,Sb,Te和Se,目前最高的Z值為30×10-3/K,而用SPS制備的熱電半導體的Z值已達到29~30×10-3/K,幾乎等于單晶半導體的性能[30]。表2是SPS和其它方法生產(chǎn)BiTe材料的比較。53鐵電材料用SPS燒結(jié)鐵電陶瓷PbTiO3時,在900℃~1000℃下燒結(jié)1~3min,燒結(jié)后平均顆粒尺寸<1μm,相對密度超過98%。由于陶瓷中孔洞較少[31],因此在101~106Hz之間介電常數(shù)基本不隨頻率而變化。用SPS制備鐵電材料Bi4Ti3O12陶瓷時,在燒結(jié)體晶粒伸長和粗化的同時,陶瓷迅速致密化。用SPS容易得到晶粒取向度好的試樣,可觀察到晶粒擇優(yōu)取向的Bi4Ti3O12陶瓷的電性能有強烈的各向異性[32]。用SPS在900℃燒結(jié)制備的BaTiO3陶瓷,其晶粒尺寸接近200nm[33]。用SPS制備鐵電Li置換IIVI半導體ZnO陶瓷,使鐵電相變溫度Tc提高到470K,而以前冷壓燒結(jié)陶瓷只有330K[34]。54磁性材料用SPS燒結(jié)NdFeB磁性合金,若在較高溫度下燒結(jié),可以得到高的致密度,但燒結(jié)溫度過高會導致出現(xiàn)α相和晶粒長大,磁性能惡化。若在較低溫度下燒結(jié),雖能保持良好的磁性能,但粉末卻不能被完全壓實,因此要詳細研究密度與性能的關(guān)系[35]。SPS在燒結(jié)磁性材料時具有燒結(jié)溫度低、保溫時間短的工藝優(yōu)點。NdFeCoVB在650℃下保溫5min,即可燒結(jié)成接近完全密實的塊狀磁體,沒有發(fā)現(xiàn)晶粒長大[36]。用SPS制備的865Fe6Si4Al35Ni和MgFe2O4的復合材料(850℃,130MPa),具有高的飽和磁化強度Bs=12T和高的電阻率ρ=1×10-2Ω·m[37]。以前用快速凝固法制備的軟磁合金薄帶,雖已達到幾十納米的細小晶粒組織,但是不能制備成合金塊體,應(yīng)用受到限制。而現(xiàn)在采用SPS制備的塊體磁性合金的磁性能已達到非晶和納米晶組織帶材的軟磁性能[3]。55納米材料致密納米材料的制備越來越受到重視。利用傳統(tǒng)的熱壓燒結(jié)和熱等靜壓燒結(jié)等方法來制備納米材料時,很難保證能同時達到納米尺寸的晶粒和完全致密的要求。利用SPS技術(shù),由于加熱速度快,燒結(jié)時間短,可顯著抑制晶粒粗化。例如:用平均粒度為5μm的TiN粉經(jīng)SPS燒結(jié)(1963K,196~382MPa,燒結(jié)5min),可得到平均晶粒65nm的TiN密實體[3]。文獻[3]中引用有關(guān)實例說明了SPS燒結(jié)中晶粒長大受到最大限度的抑制,所制得燒結(jié)體無疏松和明顯的晶粒長大。SPS燒結(jié)時,雖然所加壓力較小,但是除了壓力的作用會導致活化能Q降低外,由于存在放電的作用,也會使晶粒得到活化而使Q值進一步減小,從而會促進晶粒長大,因此從這方面來說,用SPS燒結(jié)制備納米材料有一定的困難。但是實際上已有成功制備平均晶粒度為65nm的TiN密實體的實例。在文獻[38]中,非晶粉末用SPS燒結(jié)制備出20~30nm的Fe90Zr7B3納米磁性材料。另外,還已發(fā)現(xiàn)晶粒隨SPS燒結(jié)溫度變化比較緩慢[7],因此SPS制備納米材料的機理和對晶粒長大的影響還需要作進一步的研究。56非晶合金的制備在非晶合金的制備中,要選擇合金成分以保證合金具有極低的非晶形成臨界冷卻速度,從而獲得極高的非晶形成能力。在制備工藝方面主要有金屬模澆鑄法和水淬法,其關(guān)鍵是快速冷卻和控制非均勻形核。由于制備非晶合金粉末的技術(shù)相對成熟,因此多年來,采用非晶粉末在低于其晶化溫度下進行溫擠壓、溫軋、沖擊(爆炸)固化和等靜壓燒結(jié)等方法來制備大塊非晶合金,但存在不少技術(shù)難題,如非晶粉末的硬度總高于晶態(tài)粉末,因而壓制性能欠佳,其綜合性能與旋淬法制備的非晶薄帶相近,難以作為高強度結(jié)構(gòu)材料使用[39]??梢娪闷胀ǚ勰┮苯鸱ㄖ苽浯髩K非晶材料存在不少技術(shù)難題。SPS作為新一代燒結(jié)技術(shù)有望在這方面取得進展,文獻[40]中利用SPS燒結(jié)由機械合金化制取的非晶Al基粉末得到了塊狀圓片試樣(10mm×2mm),此非晶合金是在375MPa下503K時保溫20min制備的,含有非晶相和結(jié)晶相以及殘余的Sn相。其非晶相的結(jié)晶溫度是533K。文獻[41]中用脈沖電流在423K和500MPa下制備了Mg80Ni10Y5B5塊狀非晶合金,經(jīng)分析其中主要是非晶相。非晶Mg合金比A291D合金和純鎂有較高的腐蝕電位和較低的腐蝕電流密度,非晶化改善了鎂合金的抗腐蝕抗力。從實踐來看,可以采用SPS燒結(jié)法制備塊狀非晶合金。因此利用先進的SPS技術(shù)進行大塊非晶合金的制備研究很有必要。6總結(jié)與展望放電等離子燒結(jié)(SPS)是一種低溫、短時的快速燒結(jié)法,可用來制備金屬、陶瓷、納米材料、非晶材料、復合材料、梯度材料等。SPS的推廣應(yīng)用將在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論