【麥肯錫】掌握雙重使命:降低碳排放和節(jié)約成本_第1頁(yè)
【麥肯錫】掌握雙重使命:降低碳排放和節(jié)約成本_第2頁(yè)
【麥肯錫】掌握雙重使命:降低碳排放和節(jié)約成本_第3頁(yè)
【麥肯錫】掌握雙重使命:降低碳排放和節(jié)約成本_第4頁(yè)
【麥肯錫】掌握雙重使命:降低碳排放和節(jié)約成本_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

June2022

OperationsPractice

Masteringthedualmission:Carbonandcostsavings

OEMswillneedtomovequicklytoachievetheir“dual-saving”ambitionofreducingbothtotalproductemissionsandcosts.Alimitedsupplyoflow-carbonmaterialsaddspressuretoactnow.

byJohanBengtsson,ErikDellborg,MikaelHanicke,andYvonneHuemer

?ArturDebat/GettyImages

2Masteringthedualmission:Carbonandcostsavings

Production

40

Inrecentyears,regulationandgrowingconsumerdemandforlow-emissionvehicleshaveturbochargedtheracetodrivedowntailpipeemissions.Now,withsignificantgainsmadetoreducecarbonemissions—andanelectric-vehicle(EV)futureuponus—carmanufacturersneedtolookbeyondthetailpipetodelivergreenercarsatcompetitivecostandareducedcarbonfootprint.

Byturningtheirattentionbacktothedesignprocessandscrutinizingtheend-to-endmanufacturingvaluechain,industryplayershaveanopportunitytocapturethedualbenefitofcarbonandcostsavings.

However,withdemandforlow-carbonmaterialsgrowingfromarangeofindustriesandcompetitors—andglobalsupplyconstrained—automotivefirmswillneedtoactwithspeedtosecuretheirlow-carbonsupplychains.

Thisarticleexploresmaterialsandproductionprocessesasthenextfrontierforcarbonemissionreductions,andthestepsindustryplayerscantakenowtodevelopenvironmentallyfriendlycarsatalowerper-unitcost.

Costandcarbonpressurescontinuetomount

AsEVtechnologyadvancesandglobalmarketsprepareforthephasingoutofinternal-combustion-engine(ICE)vehicles,OEMsfaceasqueezeontheirprofitmargins.EVsaremoreexpensivetomanufacturethanpetrolordieselenginecarsandrequiresubstantialR&Dandcapitalexpenditureinvestments.Notsurprisingly,controloverthecostofeachEVsoldisnowacorecomponentofOEMbusinessmodels.

Atthesametime,sincemid-2020,carmanufacturers’decarbonizationtargetshavebecomeincreasinglyambitious.OEMsaremakingboldcommitmentsbeyondtheirscope1and2emissions,andsomeoftheleadingglobalmanufacturersaresettingstretchingtargetstoreduceemissionsacrosstheentireproductvaluechain.

Theelectrificationofcarsalonewillnotautomaticallyleadtonetzero.Battery-electricvehicles(BEVs)canhaveuptotwicetheamountofproductionemissionscomparedwithICEvehicles—drivenbythecarbonintensityofbatteriesandhighnumberofelectroniccomponents.High-emissionmaterialssuchasaluminumandbattery-activematerialsdriveupemissions,makingvaluechaindecarbonizationessentialforsecuringthenet-positiveCO2benefitsofEVs(Exhibit1).

Exhibit1

Asproductsbecomemoresustainable,productionusuallyaccountsformoreoftheiremissions.

Shiftinlife-cycleCO?emissions,index(100=dieselinternal-combustion-engineemissions)

Operation

20

55

80

Dieselinternal-Battery-electricvehicleBEVoperatedusing

combustionengine(BEV)operatedusingrenewable-powersources

conventionalpowersources

Source:StephanFuchs,“Methodforparameter-basedweightestimationofnewvehicleconcepts,”(doctoraldissertation,TechnicalUniversityofMunich,April29,2014);McKinseyanalysis

Masteringthedualmission:Carbonandcostsavings3

Whiledecarbonizationbeyondthetailpipecanbeakeydifferentiatorwithintheautomotiveindustry,theglobalsupplyoflow-carbonmaterialsiscurrentlylowerthandemand.Supplyislikelytobesqueezedfurtherasmoreindustriesscrambletosecurelow-carbonvaluechainsinthecomingyears.Firmswillneedtoactfasttogetaheadofthecompetitionforsupply.

Pursuingthedualmissionofcostandcarbonsavings

Adaptingtheindustrystandarddesign-to-value(DTV)processtoconsiderallvalueatstake,insteadofcostalone,canhelpcompaniessecurethegreatesttotalvalueandmostattractiveeconomiesovertheentireproductlifecycle.

DTVcombinesdeepinsightsfromthreekeyareas:whatconsumersvalueinproducts;competitiveinsightsintohowothercompaniesdesignofferingstomeetconsumerneeds;andsupplierinsightsintonewtechnologiesandthecosttomanufactureproducts.Theresultisgreaterabilitytotranslatehigh-levelstrategyintodesignchoicesforproductsandservicesaswellastheunderlyingprocessesalongthesupplychain.Theresultinginsightscanleadtodecisionstosimplifytheproductdesignthroughusinglessmaterial,reducethespecificationswherepossible,orinvestigatesmarterdesignsolutions.

Byaddingasustainabilitylenstothisfact-based,multidimensionalapproach,thereimagineddual-missionDTVandcarbonmethodologycouldenableautomotive-industryfirmstouncoveropportunitiesfordecarbonizationacrossthemanufacturingvaluechain.

Fromthismethodology,fourkeyprinciplesemergetoachievecostandcarbonsavingsintheautomotivesector.Ascostreductionisalreadystandardpracticeformanycompanies,thefocushereisonthecarbonreductionaspectoftheapproach.

CreatetransparencyontheCO2baseline.Withcarmanufacturersfacingincreasingscrutinyonthetotalcarbonfootprintoftheirvehicles,understandingtheCO2baselineofavehicleisthecriticalfirststep.ThisincludesadetailedbreakdownofCO2foreachproductalongthevaluechain.

Toofferfulltransparencyintotheprocess,thebaselineincludesCO2emissionsalongtheprimarymaterialproductionprocesses—forexample,mining,smelting,andcastingforaluminum—aswellasthecomponentproductionprocesses,suchasprocessconsumablesandproductionmachinery.Inrimproduction,forexample,smeltingtherawmaterialaccountsfor64percentofthecarbonemitted,whileonly14percentofthecarboncomesfromtheactivitiesoftier-1suppliers(Exhibit2).

Exhibit2

Thebulkofrimproductionemissionsarefromtheprimaryproductionofaluminum.

CO?emissionsforarimsupplier,kilogram(kg)ofCO?perkgofaluminum

25

20

15

10

5

0

Rimproduction

Primaryproductionofaluminum

MiningAluminaAnodeSmeltingCastingProcessProductionTotalCO?

consumablesmachineryemissions

Source:McKinseyCleansheetSolution

4Masteringthedualmission:Carbonandcostsavings

Crucially,manufacturerscannotrelysolelyonsupplierstoprovidethisdetailandmayneedtodevelopthecapabilityinternallytogeneratetheleveloftransparencyrequiredtoarriveatanaccurateCO2baseline.

IdentifyandevaluateCO2levers.Oncecarbon-intensivecomponentsandprocessesareunderstood,anumberofleverscanbeappliedtoaddressthedifferentproductionprocessesthatemitCO2.Leversincludealternativeenergysources,circularitytodecreasewaste,designshiftstoreducetheamountofrawmaterialrequiredormaterialused—forexample,changingfrommagnesiumtorecycledplastic—andenergyefficiency.

Intherimproductionexample,themostpromisingleversfocusonsmeltingaluminumwithrenewableenergyandincreasingtheshareofrecycled

aluminum.Butadditionalleversfocusontier-1suppliers,suchasreducingenergyuseduringthepaintingprocess.ExamplesfromAsiansuppliersshowthatseveraloftheselevers,includingtheshifttoadifferentaluminumsupplierwithloweremissionlevels,couldbeachievableatthesameorevenlowercost,whileatthesametimereducingemissionsbymorethan50percent.

TodecideontherightcostandCO2leverstopursue,thesavingpotentialofcarbonreductionneedstobefactoredintoenablefact-baseddecisionmaking.Includingacarbonpriceintotheaccountinghelpstodetermineholisticallyifacostreductionthatcausesanincreaseofcarbon—oracarbondecreasethatcausesanincreaseincost—istherightthingtodo.Focusingsolelyoncostandcarbonreductioninequalmeasurelimitsthepotentialforbigstepstowardzero-carbonproducts(Exhibit3).

Exhibit3

Whilesomedecarbonizationleversarecostly,othersreducebothcostandemissions.

Abatementpotentialvsabatementcostofmaterials

Abatement

cost,1$per

metricton

ofCO?

800

400

0

–300

Steel

Aluminum

Alumina

PolypropylenePolyethylenePolyamide6Glass

Battery

Rubber

01018

Abatementpotential,millionsofmetrictonsofCO?peryear

1Internal-combustion-enginevehicle,allcarbonreductionlevers,2030estimate.

Source:McKinseyanalysis

Masteringthedualmission:Carbonandcostsavings5

Definetheimplementationstrategy.Next,theidentifiedleverscanbeevaluatedandprioritizedregardingbothcostandCO2emissionimpacts,aswellasotherrelevantimplicationssuchasqualityandavailabilityofsupply.TheCO2effectofeachproductcanbeunderstoodbydrawingonraw-materialanalysis,regional-specificemissionfactors,processsteps,andinternalandexternallogistics,alongsidethepartspriceandinvestmenteffort.

Basedontheseinsights,implementationstrategiescanfollowanumberofdifferentroutes.Componentscanberedesignedthroughtechnicalchanges,orOEMscanlooktocollaboratewithexistingsuppliersonchangestoprocessesormaterials.Wheretheseroutesproveunfeasible,anoverallswitchinmaterialstrategyorsuppliermaybeneeded.

Thekeyareasoffocusforimplementationincludehowtohandlesuppliernegotiationsandhowtoimplementanytechnicalchangesaffectingmanufacturers.Acloseworkingrelationshipbetweenmanufacturersandsupplierscanhelpencourageashifttoalternativeenergysourcesandmakesuresupplieroperationsrunasefficientlyaspossible.

Whereatechnicalchangeisrequired,carmanufacturersmayneedtocreateaplantoredesignandvalidatepotentialtoolchangeswithadditionalcostsavingsinmind.Establishingthefeasibilityofactingoneverysupplychangecanilluminatewhatistechnicallypossiblewithinanorganizationandhowthesechangeswillaffectthewaycarmanufacturersapproachandunderstandpotentialandpastsuppliers.

Implementalternativetechnicaldesignornegotiatedifferentmaterialsources.CollaborationwithsuppliersandR&Darekeyenablersofboththecommercialandtechnicalaspectsoftheimplementationstrategy.Tothisend,itishelpfultodeveloptargetedstrategiesfornegotiatingcostandqualityimprovementswithsuppliersandtohelpsuppliersdecarbonizetheirownsupplychains,forawin–winscenario.Implementationonthetechnicalsiderequiressignificantpreparationregardingthedetailedvaluechainandmaterialinputanalysis,aswellasfeasibilityevaluation,andtestingwithR&D.

Fourkeyinsightstosteeradual-missionstrategy

Thedual-missionDTVandcarbonapproachhasbeenappliedwithsuccessacrossnumeroussectors,givingrisetofourkeyinsightsthatcanhelpshapethedual-missionchallenge.

Thetimetoactisnow.Severalopportunitiesforcost-efficientdecarbonizationwillbeavailableonlyduringashortwindow:thesupplyofmaterialsneededforminimizingemissionsfacesincreasingdemandbutnotyetonthelevelforecasted.Thiswillnotbethecaseformuchlonger.Futurecarbontaxesmightfurtherincreasethepressuretoact.

ItispossibletoreducecostandCO2atthesametime.Actingnowmeansthereisanopportunitytocapturecostandcarbonopportunitiestogether.Forexample,OEMsworkingdirectlywithraw-materialsuppliershavesuccessfullydecreasedtheCO2emissionsofaluminumcomponentsby50percent—andatthesametimeclosedcostgaps.

Significantreductionscanbeachievedinshorttimeframes.Aglobalautomakerusedthisdual-missionapproachtoidentifyupto5percentcostand20percentcarbonreductionopportunitiesforanin-productionEV,withanimplementationtimeoflessthantwoyears.Fornext-generationvehicles,theopportunitytodecarbonizeproductsandachievecostefficiencyhasprovenevenlargerbasedonagreaterdegreeoffreedomindesignandsupplierchoices.

Abroadsetofcapabilitiesisneeded.Capabilitiesneedtobebuiltbroadlyintheorganizationtosuccessfullyexecutethedual-missionprogram.Thisincludessupplychaintransparency—forexample,analyzingthecarbonfootprintofdifferentsuppliers,understandingthelevers,includingimplementationeffortandtimeversuscarbonreductionpotential,design-for-sustainabilitythinking,andtheupskillingoftheprocurementteamonhowtowor

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論