版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
------------------------------------回瀾閣教育免費(fèi)的教育資源庫------------------------------------初一奧數(shù)數(shù)學(xué)競賽第一講有理數(shù)的巧算
初一奧數(shù)數(shù)學(xué)競賽
\o"第一講
有理數(shù)的巧算"
第一講
有理數(shù)的巧算
有理數(shù)運(yùn)算是中學(xué)數(shù)學(xué)中一切運(yùn)算的基礎(chǔ).它要求同學(xué)們在理解有理數(shù)的有關(guān)概念、法則的基礎(chǔ)上,能根據(jù)法則、公式等正確、迅速地進(jìn)行運(yùn)算.不僅如此,還要善于根據(jù)題目條件,將推理與計算相結(jié)合,靈活巧妙地選擇合理的簡捷的算法解決問題,從而提高運(yùn)算能力,發(fā)展思維的敏捷性與靈活性.1.括號的使用在代數(shù)運(yùn)算中,可以根據(jù)運(yùn)算法則和運(yùn)算律,去掉或者添上括號,以此來改變運(yùn)算的次序,使復(fù)雜的問題變得較簡單.例1計算:分析中學(xué)數(shù)學(xué)中,由于負(fù)數(shù)的引入,符號“+”與“-”具有了雙重涵義,它既是表示加法與減法的運(yùn)算符號,也是表示正數(shù)與負(fù)數(shù)的性質(zhì)符號.因此進(jìn)行有理數(shù)運(yùn)算時,一定要正確運(yùn)用有理數(shù)的運(yùn)算法則,尤其是要注意去括號時符號的變化.注意在本例中的乘除運(yùn)算中,常常把小數(shù)變成分?jǐn)?shù),把帶分?jǐn)?shù)變成假分?jǐn)?shù),這樣便于計算.例2計算下式的值:211×555+445×789+555×789+211×445.分析直接計算很麻煩,根據(jù)運(yùn)算規(guī)則,添加括號改變運(yùn)算次序,可使計算簡單.本題可將第一、第四項和第二、第三項分別結(jié)合起來計算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1000000.說明加括號的一般思想方法是“分組求和”,它是有理數(shù)巧算中的常用技巧.例3計算:S=1-2+3-4+…+(-1)n+1·n.分析不難看出這個算式的規(guī)律是任何相鄰兩項之和或為“1”或為“-1”.如果按照將第一、第二項,第三、第四項,…,分別配對的方式計算,就能得到一系列的“-1”,于是一改“去括號”的習(xí)慣,而取“添括號”之法.解S=(1-2)+(3-4)+…+(-1)n+1·n.下面需對n的奇偶性進(jìn)行討論:當(dāng)n為偶數(shù)時,上式是n/2個(-1)的和,所以有當(dāng)n為奇數(shù)時,上式是(n-1)/2個(-1)的和,再加上最后一項(-1)n+1·n=n,所以有例4在數(shù)1,2,3,…,1998前添符號“+”和“-”,并依次運(yùn)算,所得可能的最小非負(fù)數(shù)是多少?分析與解因為若干個整數(shù)和的奇偶性,只與奇數(shù)的個數(shù)有關(guān),所以在1,2,3,…,1998之前任意添加符號“+”或“-”,不會改變和的奇偶性.在1,2,3,…,1998中有1998÷2個奇數(shù),即有999個奇數(shù),所以任意添加符號“+”或“-”之后,所得的代數(shù)和總為奇數(shù),故最小非負(fù)數(shù)不小于1.現(xiàn)考慮在自然數(shù)n,n+1,n+2,n+3之間添加符號“+”或“-”,顯然n-(n+1)-(n+2)+(n+3)=0.這啟發(fā)我們將1,2,3,…,1998每連續(xù)四個數(shù)分為一組,再按上述規(guī)則添加符號,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非負(fù)數(shù)是1.說明本例中,添括號是為了造出一系列的“零”,這種方法可使計算大大簡化.2.用字母表示數(shù)我們先來計算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.這是一個對具體數(shù)的運(yùn)算,若用字母a代換100,用字母b代換2,上述運(yùn)算過程變?yōu)?a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我們得到了一個重要的計算公式(a+b)(a-b)=a2-b2,①這個公式叫平方差公式,以后應(yīng)用這個公式計算時,不必重復(fù)公式的證明過程,可直接利用該公式計算.例5計算3001×2999的值.解3001×2999=(3000+1)(3000-1)=30002-12=8999999.例6計算103×97×10009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99999919.例7計算:分析與解直接計算繁.仔細(xì)觀察,發(fā)現(xiàn)分母中涉及到三個連續(xù)整數(shù):12345,12346,12347.可設(shè)字母n=12346,那么12345=n-1,12347=n+1,于是分母變?yōu)閚2-(n-1)(n+1).應(yīng)用平方差公式化簡得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24690.例8計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一個數(shù)都是前一個數(shù)的平方,若在(2+1)前面有一個(2-1),就可以連續(xù)遞進(jìn)地運(yùn)用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9計算:分析在前面的例題中,應(yīng)用過公式(a+b)(a-b)=a2-b2.這個公式也可以反著使用,即a2-b2=(a+b)(a-b).本題就是一個例子.通過以上例題可以看到,用字母表示數(shù)給我們的計算帶來很大的益處.下面再看一個例題,從中可以看到用字母表示一個式子,也可使計算簡化.例10計算:我們用一個字母表示它以簡化計算.3.觀察算式找規(guī)律例11某班20名學(xué)生的數(shù)學(xué)期末考試成績?nèi)缦?,請計算他們的總分與平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析與解若直接把20個數(shù)加起來,顯然運(yùn)算量較大,粗略地估計一下,這些數(shù)均在90上下,所以可取90為基準(zhǔn)數(shù),大于90的數(shù)取“正”,小于90的數(shù)取“負(fù)”,考察這20個數(shù)與90的差,這樣會大大簡化運(yùn)算.所以總分為90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分為90+(-1)÷20=89.95.例12計算1+3+5+7+…+1997+1999的值.分析觀察發(fā)現(xiàn):首先算式中,從第二項開始,后項減前項的差都等于2;其次算式中首末兩項之和與距首末兩項等距離的兩項之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再將S各項倒過來寫為S=1999+1997+1995+…+3+1.②將①,②兩式左右分別相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500個2000)=2000×500.從而有S=500000.說明一般地,一列數(shù),如果從第二項開始,后項減前項的差都相等(本題3-1=5-3=7-5=…=1999-1997,都等于2),那么,這列數(shù)的求和問題,都可以用上例中的“倒寫相加”的方法解決.例13計算1+5+52+53+…+599+5100的值.分析觀察發(fā)現(xiàn),上式從第二項起,每一項都是它前面一項的5倍.如果將和式各項都乘以5,所得新和式中除個別項外,其余與原和式中的項相同,于是兩式相減將使差易于計算.解設(shè)S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,說明如果一列數(shù),從第二項起每一項與前一項之比都相等(本例中是都等于5),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.例14計算:分析一般情況下,分?jǐn)?shù)計算是先通分.本題通分計算將很繁,所以我們不但不通分,反而利用如下一個關(guān)系式來把每一項拆成兩項之差,然后再計算,這種方法叫做拆項法.解由于所以說明本例使用拆項法的目的是使總和中出現(xiàn)一些可以相消的相反數(shù)的項,這種方法在有理數(shù)巧算中很常用.練習(xí)一1.計算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬教新版必修1物理上冊月考試卷含答案
- 2025年滬教版七年級歷史上冊階段測試試卷含答案
- 2025至2031年中國2-氨基-6-氯苯并噻唑行業(yè)投資前景及策略咨詢研究報告
- 廚房改造合同解除模板
- 2025年岳麓版高一化學(xué)上冊月考試卷含答案
- 2025至2030年中國石材切割機(jī)電機(jī)數(shù)據(jù)監(jiān)測研究報告
- 購物中心水電維修服務(wù)協(xié)議
- 2025年華師大版選擇性必修2地理下冊月考試卷含答案
- 2025至2030年中國水泥構(gòu)件數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國氣相色譜分析儀數(shù)據(jù)監(jiān)測研究報告
- 第7課《中華民族一家親》(第一課時)(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- 急診科十大護(hù)理課件
- 山東省濟(jì)寧市2023-2024學(xué)年高一上學(xué)期1月期末物理試題(解析版)
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2025年上半年河南鄭州滎陽市招聘第二批政務(wù)輔助人員211人筆試重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省濟(jì)南市歷城區(qū)2024-2025學(xué)年七年級上學(xué)期期末數(shù)學(xué)模擬試題(無答案)
- 國家重點(diǎn)風(fēng)景名勝區(qū)登山健身步道建設(shè)項目可行性研究報告
- 投資計劃書模板計劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
- 2024-2025學(xué)年九年級語文上學(xué)期第三次月考模擬卷(統(tǒng)編版)
評論
0/150
提交評論