浙江省臺(tái)州市椒江區(qū)市級(jí)名校2023屆中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
浙江省臺(tái)州市椒江區(qū)市級(jí)名校2023屆中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
浙江省臺(tái)州市椒江區(qū)市級(jí)名校2023屆中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
浙江省臺(tái)州市椒江區(qū)市級(jí)名校2023屆中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
浙江省臺(tái)州市椒江區(qū)市級(jí)名校2023屆中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果t>0,那么a+t與a的大小關(guān)系是()A.a(chǎn)+t>aB.a(chǎn)+t<aC.a(chǎn)+t≥aD.不能確定2.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),它們離甲地的路程y(km)與客車行駛時(shí)間x(h)間的函數(shù)關(guān)系如圖,下列信息:(1)出租車的速度為100千米/時(shí);(2)客車的速度為60千米/時(shí);(3)兩車相遇時(shí),客車行駛了3.75小時(shí);(4)相遇時(shí),出租車離甲地的路程為225千米.其中正確的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.4.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,5.如圖,菱形中,對(duì)角線AC、BD交于點(diǎn)O,E為AD邊中點(diǎn),菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.146.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動(dòng)點(diǎn)(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.437.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據(jù)測定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學(xué)記數(shù)法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣78.剪紙是我國傳統(tǒng)的民間藝術(shù),下列剪紙作品中既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形的是()A. B. C. D.9.從標(biāo)號(hào)分別為1,2,3,4,5的5張卡片中隨機(jī)抽取1張,下列事件中不可能事件是()A.標(biāo)號(hào)是2 B.標(biāo)號(hào)小于6 C.標(biāo)號(hào)為6 D.標(biāo)號(hào)為偶數(shù)10.計(jì)算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.11.下列二次根式中,最簡二次根式是()A. B. C. D.12.第24屆冬奧會(huì)將于2022年在北京和張家口舉行,冬奧會(huì)的項(xiàng)目有滑雪(如跳臺(tái)滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對(duì)邊BC相切,將矩形紙片ABCD沿DE折疊,使點(diǎn)A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.14.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側(cè)面積等于_____cm1.15.如圖,等邊△ABC的邊長為1cm,D、E分別是AB、AC邊上的點(diǎn),將△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)處,且點(diǎn)在△ABC的外部,則陰影部分圖形的周長為_____cm.16.如圖,矩形ABCD的對(duì)角線AC與BD交于點(diǎn)O,過點(diǎn)O作BD的垂線分別交AD,BC于E,F(xiàn)兩點(diǎn).若AC=,∠AEO=120°,則FC的長度為_____.17.若兩個(gè)相似三角形的面積比為1∶4,則這兩個(gè)相似三角形的周長比是__________.18.若一個(gè)圓錐的底面圓的周長是cm,母線長是,則該圓錐的側(cè)面展開圖的圓心角度數(shù)是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點(diǎn)C是∠AOB的邊OB上的一點(diǎn),求作⊙P,使它經(jīng)過O、C兩點(diǎn),且圓心在∠AOB的平分線上.20.(6分)如圖,已知∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE與BD相交于點(diǎn)O.求證:EC=ED.21.(6分)某公司銷售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售:①若只在國內(nèi)銷售,銷售價(jià)格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤為W內(nèi)(元);②若只在國外銷售,銷售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),月利潤為W外(元).(1)若只在國內(nèi)銷售,當(dāng)x=1000(件)時(shí),y=(元/件);(2)分別求出W內(nèi)、W外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);(3)若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.22.(8分)在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.23.(8分)我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點(diǎn)稱為斜坐標(biāo)系的原點(diǎn),如圖1,經(jīng)過平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PM和PN,分別交x軸和y軸于點(diǎn)M,N.點(diǎn)M、N在x軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(duì)(x,y)稱為點(diǎn)P的斜坐標(biāo),記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點(diǎn)D,OA=2,OC=l.①點(diǎn)A、B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A,B,C.②設(shè)點(diǎn)P(x,y)在經(jīng)過O、B兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為.③設(shè)點(diǎn)Q(x,y)在經(jīng)過A、D兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為.(2)若ω=120°,O為坐標(biāo)原點(diǎn).①如圖3,圓M與y軸相切原點(diǎn)O,被x軸截得的弦長OA=4,求圓M的半徑及圓心M的斜坐標(biāo).②如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個(gè)點(diǎn)到y(tǒng)軸的距離為1,則圓M的半徑r的取值范圍是.24.(10分)光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見表:每臺(tái)甲型收割機(jī)的租金每臺(tái)乙型收割機(jī)的租金A地區(qū)18001600B地區(qū)16001200(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設(shè)計(jì)出來;(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.25.(10分)若關(guān)于的方程無解,求的值.26.(12分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對(duì)應(yīng)線段CF.(1)求證:BE=DF;(2)當(dāng)t=秒時(shí),DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?27.(12分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】試題分析:根據(jù)不等式的基本性質(zhì)即可得到結(jié)果.t>0,∴a+t>a,故選A.考點(diǎn):本題考查的是不等式的基本性質(zhì)點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握不等式的基本性質(zhì)1:不等式兩邊同時(shí)加或減去同一個(gè)整式,不等號(hào)方向不變.2、D【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個(gè)小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時(shí),故(1)正確,客車的速度為:600÷10=60千米/時(shí),故(2)正確,兩車相遇時(shí),客車行駛時(shí)間為:600÷(100+60)=3.75(小時(shí)),故(3)正確,相遇時(shí),出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.3、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.4、A【解析】

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點(diǎn)O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點(diǎn)睛】本題考查了正多邊形和圓的知識(shí);求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.5、A【解析】

根據(jù)菱形的四條邊都相等求出AB,再根據(jù)菱形的對(duì)角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點(diǎn),∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.6、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點(diǎn)睛】本題考查了軸對(duì)稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.7、C【解析】試題分析:絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.所以0.0000105=1.05×10﹣5,故選C.考點(diǎn):科學(xué)記數(shù)法.8、C【解析】【分析】根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】A、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)正確;D、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題主要考查軸對(duì)稱圖形和中心對(duì)稱圖形,在平面內(nèi),如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對(duì)稱圖形;在平面內(nèi),如果把一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個(gè)圖形是中心對(duì)稱圖形.9、C【解析】

利用隨機(jī)事件以及必然事件和不可能事件的定義依次分析即可解答.【詳解】選項(xiàng)A、標(biāo)號(hào)是2是隨機(jī)事件;選項(xiàng)B、該卡標(biāo)號(hào)小于6是必然事件;選項(xiàng)C、標(biāo)號(hào)為6是不可能事件;選項(xiàng)D、該卡標(biāo)號(hào)是偶數(shù)是隨機(jī)事件;故選C.【點(diǎn)睛】本題考查了隨機(jī)事件以及必然事件和不可能事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.10、D【解析】分析:根據(jù)冪的乘方計(jì)算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點(diǎn)睛:本題主要考查的是冪的計(jì)算法則,屬于基礎(chǔ)題型.明白冪的計(jì)算法則是解決這個(gè)問題的關(guān)鍵.11、C【解析】

檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點(diǎn)睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個(gè)條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.12、B【解析】

先找出滑雪項(xiàng)目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項(xiàng)目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是.故選B.【點(diǎn)睛】本題考查了簡單事件的概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對(duì)邊BC相切,∴AD=2CD.∴根據(jù)折疊對(duì)稱的性質(zhì),A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.14、10π【解析】

解:根據(jù)圓錐的側(cè)面積公式可得這個(gè)圓錐的側(cè)面積=?1π?4?5=10π(cm1).故答案為:10π【點(diǎn)睛】本題考查圓錐的計(jì)算.15、3【解析】

由折疊前后圖形全等,可將陰影部分圖形的周長轉(zhuǎn)化為三角形周長.【詳解】∵△A'DE與△ADE關(guān)于直線DE對(duì)稱,∴AD=A'D,AE=A'E,C陰影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案為3.【點(diǎn)睛】由圖形軸對(duì)稱可以得到對(duì)應(yīng)的邊相等、角相等.16、1【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四邊形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案為:1.【點(diǎn)睛】本題考查矩形的性質(zhì)以及解直角三角形的運(yùn)用,解題關(guān)鍵是掌握:矩形的對(duì)角線相等且互相平分.17、【解析】試題分析:∵兩個(gè)相似三角形的面積比為1:4,∴這兩個(gè)相似三角形的相似比為1:1,∴這兩個(gè)相似三角形的周長比是1:1,故答案為1:1.考點(diǎn):相似三角形的性質(zhì).18、【解析】

利用圓錐的底面周長和母線長求得圓錐的側(cè)面積,然后再利用圓錐的面積的計(jì)算方法求得側(cè)面展開扇形的圓心角的度數(shù)即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側(cè)面扇形的弧長為cm,,解得:故答案為.【點(diǎn)睛】此題考查弧長的計(jì)算,解題關(guān)鍵在于求得圓錐的側(cè)面積三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、答案見解析【解析】

首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點(diǎn)就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點(diǎn)睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關(guān)鍵..20、見解析【解析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等)是解題的關(guān)鍵.21、(1)140;(2)W內(nèi)=-x2+130x,W外=-x2+(150-a)x;(3)a=1.【解析】試題分析:(1)將x=1000代入函數(shù)關(guān)系式求得y,;(2)根據(jù)等量關(guān)系“利潤=銷售額﹣成本”“利潤=銷售額﹣成本﹣附加費(fèi)”列出函數(shù)關(guān)系式;(3)對(duì)w內(nèi)函數(shù)的函數(shù)關(guān)系式求得最大值,再求出w外的最大值并令二者相等求得a值.試題解析:(1)x=1000,y=-×1000+150=140;(2)W內(nèi)=(y-1)x=(-x+150-1)x=-x2+130x.W外=(150-a)x-x2=-x2+(150-a)x;(3)W內(nèi)=-x2+130x=-(x-6500)2+2,由W外=-x2+(150-a)x得:W外最大值為:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.經(jīng)檢驗(yàn),a=280不合題意,舍去,∴a=1.考點(diǎn):二次函數(shù)的應(yīng)用.22、(1)見解析;(2).【解析】

(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為.【點(diǎn)睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識(shí)點(diǎn),能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.23、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半徑為4,M(,);②﹣1<r<+1.【解析】

(1)①如圖2-1中,作BE∥OD交OA于E,CF∥OD交x軸于F.求出OE、OF、CF、OD、BE即可解決問題;②如圖2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行線分線段成比例定理即可解決問題;③如圖3-3中,作QM∥OA交OD于M.利用平行線分線段成比例定理即可解決問題;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N.解直角三角形即可解決問題;②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1時(shí),⊙M的半徑即可解決問題.【詳解】(1)①如圖2﹣1中,作BE∥OD交OA于E,CF∥OD交x軸于F,由題意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案為(2,0),(1,),(﹣1,);②如圖2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如圖2﹣3中,作QM∥OA交OD于M,則有,∴,∴y=﹣x+,故答案為y=x,y=﹣x+;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N,∵ω=120°,OM⊥y軸,∴∠MOA=30°,∵M(jìn)F⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵M(jìn)N∥y軸,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.∵M(jìn)K∥x軸,ω=120°,∴∠MKO=60°,∵M(jìn)K=OK=2,∴△MKO是等邊三角形,∴MN=,當(dāng)FN=1時(shí),MF=﹣1,當(dāng)EN=1時(shí),ME=+1,觀察圖象可知當(dāng)⊙M的半徑r的取值范圍為﹣1<r<+1.故答案為:﹣1<r<+1.【點(diǎn)睛】本題考查圓綜合題、平行線分線段成比例定理、等邊三角形的判定和性質(zhì)、平面直角坐標(biāo)系等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造平行線解決問題,屬于中考?jí)狠S題.24、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機(jī)2臺(tái),乙型聯(lián)合收割機(jī)28臺(tái),其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機(jī)1臺(tái),乙型聯(lián)合收割機(jī)29臺(tái),其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機(jī)0臺(tái),乙型聯(lián)合收割機(jī)30臺(tái),其余的全派往B地區(qū);(3)派往A地區(qū)30臺(tái)乙型聯(lián)合收割機(jī),20臺(tái)甲型聯(lián)合收割機(jī)全部派往B地區(qū),使該公司50臺(tái)收割機(jī)每天獲得租金最高.【解析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式;

(2)根據(jù)題意可以得到相應(yīng)的不等式,從而可以解答本題;

(3)根據(jù)(1)中的函數(shù)解析式和一次函數(shù)的性質(zhì)可以解答本題.【詳解】解:(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),則派往B地區(qū)x臺(tái)乙型聯(lián)合收割機(jī)為(30﹣x)臺(tái),派往A、B地區(qū)的甲型聯(lián)合收割機(jī)分別為(30﹣x)臺(tái)和(x﹣10)臺(tái),∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數(shù),∴x=28、29、30,∴有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機(jī)2臺(tái),乙型聯(lián)合收割機(jī)28臺(tái),其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機(jī)1臺(tái),乙型聯(lián)合收割機(jī)29臺(tái),其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機(jī)0臺(tái),乙型聯(lián)合收割機(jī)30臺(tái),其余的全派往B地區(qū);(3)派往A地區(qū)30臺(tái)乙型聯(lián)合收割機(jī),20臺(tái)甲型聯(lián)合收割機(jī)全部派往B地區(qū),使該公司50臺(tái)收割機(jī)每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當(dāng)x=30時(shí),y取得最大值,此時(shí)y=80000,∴派往A地區(qū)30臺(tái)乙型聯(lián)合收割機(jī),20臺(tái)甲型聯(lián)合收割機(jī)全部派往B地區(qū),使該公司50臺(tái)收割機(jī)每天獲得租金最高.【點(diǎn)睛】本題考查一次函數(shù)的性質(zhì),解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)和不等式的性質(zhì)解答.25、【解析】分析:該分式方程無解的情況有兩種:(1)原方程存在增根;(2)原方程約去分母后,整式方程無解.詳解:去分母得:x(x-a)-1(x-1)=x(x-1),去括號(hào)得:x2-ax-1x+1=x2-x,移項(xiàng)合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a無解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,當(dāng)a+2=0時(shí),0×x=1,x無解即a=-2時(shí),整式方程無解.綜上所述,當(dāng)a=1或a=-2時(shí),原方程無解.故答案為a=1或a=-2.點(diǎn)睛:分式方程無解,既要考慮分式方程有增根的情形,又要考慮整式方程無解的情形.26、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時(shí),△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),由DF=BE′知此時(shí)DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時(shí),由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時(shí),由菱形ABCD的對(duì)角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),DF=BE′,此時(shí)DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設(shè)AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時(shí)間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當(dāng)∠EQP=90°時(shí),如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論