江蘇省徐州侯集高級中學(xué)2022-2023學(xué)年高三下學(xué)期期中(第三次月考)考試數(shù)學(xué)試題_第1頁
江蘇省徐州侯集高級中學(xué)2022-2023學(xué)年高三下學(xué)期期中(第三次月考)考試數(shù)學(xué)試題_第2頁
江蘇省徐州侯集高級中學(xué)2022-2023學(xué)年高三下學(xué)期期中(第三次月考)考試數(shù)學(xué)試題_第3頁
江蘇省徐州侯集高級中學(xué)2022-2023學(xué)年高三下學(xué)期期中(第三次月考)考試數(shù)學(xué)試題_第4頁
江蘇省徐州侯集高級中學(xué)2022-2023學(xué)年高三下學(xué)期期中(第三次月考)考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省徐州侯集高級中學(xué)2022-2023學(xué)年高三下學(xué)期期中(第三次月考)考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.02.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.3.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.4.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.55.已知向量,,且,則()A. B. C.1 D.26.正的邊長為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.7.()A. B. C.1 D.8.若復(fù)數(shù),則()A. B. C. D.209.已知集合,則=A. B. C. D.10.下列不等式成立的是()A. B. C. D.11.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.212.在正方體中,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方形邊長為,空間中的動點(diǎn)滿足,,則三棱錐體積的最大值是______.14.已知函數(shù),曲線與直線相交,若存在相鄰兩個(gè)交點(diǎn)間的距離為,則可取到的最大值為__________.15.已知向量,,若滿足,且方向相同,則__________.16.某同學(xué)周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列的前項(xiàng)和為,且.數(shù)列滿足,其前項(xiàng)和為.(1)求數(shù)列與的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個(gè)數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過.19.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.20.(12分)已知橢圓的右頂點(diǎn)為,點(diǎn)在軸上,線段與橢圓的交點(diǎn)在第一象限,過點(diǎn)的直線與橢圓相切,且直線交軸于.設(shè)過點(diǎn)且平行于直線的直線交軸于點(diǎn).(Ⅰ)當(dāng)為線段的中點(diǎn)時(shí),求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.21.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求的值;(2)若,求的面積.22.(10分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩A角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.2、C【解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.3、B【解析】

由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.4、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.5、A【解析】

根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點(diǎn)睛】本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.6、D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)椋?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫妫矫?,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計(jì)算,本題有一定的難度.7、A【解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模長的計(jì)算,同時(shí)也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.8、B【解析】

化簡得到,再計(jì)算模長得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.9、C【解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運(yùn)算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點(diǎn)睛】不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.10、D【解析】

根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對于,,,錯誤;對于,在上單調(diào)遞減,,錯誤;對于,,,,錯誤;對于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.11、A【解析】

設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.12、D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【詳解】根據(jù)拋物線的定義,點(diǎn)到點(diǎn)的距離與到直線的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個(gè)球心和兩球的切點(diǎn)均在體對角線上,兩個(gè)球在平面處的截面如圖所示,則,所以.又因?yàn)?,因此,得,所?故選:D【點(diǎn)睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點(diǎn)睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.14、4【解析】

由于曲線與直線相交,存在相鄰兩個(gè)交點(diǎn)間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結(jié)合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點(diǎn)睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用及三角方程的求解,熟練應(yīng)用三角函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵,考查了推理能力和計(jì)算能力,屬于中檔題.15、【解析】

由向量平行坐標(biāo)表示計(jì)算.注意驗(yàn)證兩向量方向是否相同.【詳解】∵,∴,解得或,時(shí),滿足題意,時(shí),,方向相反,不合題意,舍去.∴.故答案為:1.【點(diǎn)睛】本題考查向量平行的坐標(biāo)運(yùn)算,解題時(shí)要注意驗(yàn)證方向相同這個(gè)條件,否則會出錯.16、【解析】

采用列舉法計(jì)算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型的概率計(jì)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,再利用對數(shù)的運(yùn)算性質(zhì)可得出數(shù)列的通項(xiàng)公式;(2)運(yùn)用等差數(shù)列的求和公式,運(yùn)用數(shù)列的分組求和和裂項(xiàng)相消求和,化簡可得.【詳解】(1)當(dāng)時(shí),,所以;當(dāng)時(shí),,得,即,所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,.,.所以.【點(diǎn)睛】本題考查數(shù)列的遞推式的運(yùn)用,注意結(jié)合等比數(shù)列的定義和通項(xiàng)公式,考查數(shù)列的求和方法:分組求和法和裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.18、(1);(2);(3)見解析.【解析】

(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;含有且不含的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;同時(shí)含有和的子集共個(gè),經(jīng)過變換后第一行仍為、;不含也不含的子集共個(gè),經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;不含有的子集共個(gè),經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.同理,經(jīng)過變換后所有的第二行的所有數(shù)的和為.所以的所有可能取值的和為,又因?yàn)?、、、,所以的所有可能取值的和不超過.【點(diǎn)睛】本題考查數(shù)陣變換的求法,考查數(shù)陣中四個(gè)數(shù)的和不超過的證明,考查類比推理、數(shù)陣變換等基礎(chǔ)知識,考查運(yùn)算求解能力,綜合性強(qiáng),難度大.19、(1)證明見解析(2)【解析】

(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.20、(Ⅰ)直線的方程為(Ⅱ)【解析】

(1)設(shè)點(diǎn),利用中點(diǎn)坐標(biāo)公式表示點(diǎn)B,并代入橢圓方程解得,從而求出直線的方程;(2)設(shè)直線的方程為:,表示點(diǎn),然后聯(lián)立方程,利用相切得出,然后求出切點(diǎn),再設(shè)出設(shè)直線的方程,求出點(diǎn),利用兩點(diǎn)坐標(biāo),求出直線的方程,從而求出,最后利用以上已求點(diǎn)的坐標(biāo)表示面積,根據(jù)基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設(shè)點(diǎn),當(dāng)為的中點(diǎn)時(shí),可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設(shè)直線的方程為:令,得:,所以:.聯(lián)立:,消,整理得:.因?yàn)橹本€與橢圓相切,所以.即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論