2023-2024學(xué)年河南靈寶市實驗高中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2023-2024學(xué)年河南靈寶市實驗高中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2023-2024學(xué)年河南靈寶市實驗高中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2023-2024學(xué)年河南靈寶市實驗高中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2023-2024學(xué)年河南靈寶市實驗高中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年河南靈寶市實驗高中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.2.已知拋物線上一點到焦點的距離為3,準(zhǔn)線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.3.如圖,直三棱柱的所有棱長均相等,P是側(cè)面內(nèi)一點,設(shè),若P到平面的距離為2d,則點P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分4.設(shè)等差數(shù)列的前n項和為,若,,則()A.60 B.80C.90 D.1005.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸6.命題“對任何實數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得7.中,,,分別為三個內(nèi)角,,的對邊,若,,,則()A. B.C. D.8.某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中學(xué)生中抽取容量為50的樣本,則應(yīng)從高三年級抽取的學(xué)生數(shù)為()A.10 B.15C.20 D.309.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條10.下列說法正確的是()A.“若,則,全為0”的否命題為“若,則,全不為0”B.“若方程有實根,則”的逆命題是假命題C.命題“,”的否定是“,”D.“”是“直線與直線平行”的充要條件11.已知點分別是橢圓的左、右焦點,點P在此橢圓上,,則的面積等于A. B.C. D.12.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)據(jù),即“結(jié)繩計數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進一,用6來記錄每年進的錢數(shù),由圖可得,這位古人一年收入的錢數(shù)用十進制表示為()A.180 B.179C.178 D.177二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,O是AD邊中點,底面ABCD..在底面ABCD中,,,,.(1)求證:平面POC;(2)求直線PC與平面PAB所成角的正弦值.14.在數(shù)列中,滿足,則________15.小明同學(xué)發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.16.若數(shù)列滿足,,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.18.(12分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設(shè)過點且斜率為的直線與橢圓交于不同的兩點,,求當(dāng)?shù)拿娣e取得最大值時的值19.(12分)在平面直角坐標(biāo)系中,點,直線軸,垂足為H,,圓N過點O,與l的公共點的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點,若,求20.(12分)已知在等差數(shù)列中,,(1)求的通項公式;(2)若,求數(shù)列的前項和21.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標(biāo),若不存在,請說明理由.22.(10分)p:方程有兩個不等的負(fù)實數(shù)根;q:方程無實數(shù)根,若為真命題,為假命題,求實數(shù)m的取值范圍、

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知可得,,求得關(guān)于直線的對稱點為,則,計算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設(shè)關(guān)于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.2、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準(zhǔn)線方程,則可求出準(zhǔn)線l與兩條漸近線的交點分別為,然后由題意可得,進而可求出雙曲線的離心率詳解】依題意,拋物線準(zhǔn)線,由拋物線定義知,解得,則準(zhǔn)線,雙曲線C的兩條漸近線為,于是得準(zhǔn)線l與兩條漸近線的交點分別為,原點為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C3、B【解析】取的中點,得出平面,作,在直角中,求得,以為原點,為軸,為軸建立平面直角坐標(biāo)系,求得點的軌跡方程,即可求解.【詳解】如圖所示,取的中點,連接,得到平行于平面且過點的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設(shè)直三棱柱的所有棱長均為,且,以為原點,為軸,為軸建立平面直角坐標(biāo)系,則,所以,即所以,整理得,所以點P的軌跡是橢圓的一部分.故選:B.4、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因為,,故,解得,故,故選:D.5、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設(shè)冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D6、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對任何實數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.7、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.8、C【解析】根據(jù)抽取比例乘以即可求解.【詳解】由題意可得應(yīng)從高三年級抽取的學(xué)生數(shù)為,故選:C.9、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當(dāng)直線的斜率存在時,設(shè)直線方程為,與聯(lián)立得,當(dāng)時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B10、D【解析】A選項,全為0的否定是不全為0;B選項,先寫出逆命題,再判斷出真假;C選項,命題“,”的否定是“,”,D選項,根據(jù)直線平行,列出方程和不等式,求出,進而判斷出充要條件.【詳解】“若,則,全為0”的否命題為“若,則,不全為0”,A錯誤;若方程有實根,則的逆命題是若,則方程有實根,由得:,其中,所以若,則方程有實根是真命題,故B錯誤;命題“,”的否定是“,”,C錯誤;直線與直線平行,需要滿足且,解得:,所以“”是“直線與直線平行”的充要條件,D正確;故選:D11、B【解析】根據(jù)橢圓標(biāo)準(zhǔn)方程,可得,結(jié)合定義及余弦定理可求得值,由及三角形面積公式即可求解.【詳解】橢圓則,所以,則由余弦定理可知代入化簡可得,則,故選:B.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)的簡單應(yīng)用,正弦定理與余弦定理的簡單應(yīng)用,三角形面積公式的用法,屬于基礎(chǔ)題.12、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個).所以古人一年收入的錢數(shù)用十進制表示為個.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、(1)證明見解析(2)【解析】(1)由題意,證明BCOA是平行四邊形,從而可得,然后根據(jù)線面平行的判斷定理即可證明;(2)證明BCDO是平行四邊形,從而可得,由題意,可建立以為軸建立空間直角坐標(biāo)系,求出平面ABP的法向量,利用向量法即可求解直線PC與平面PAB所成角的正弦值為.【小問1詳解】證明:由題意,又,所以BCOA是平行四邊形,所以,又平面POC,平面POC,所以平面POC;【小問2詳解】解:,,所以BCDO是平行四邊形,所以,,而,所以,以為軸建立空間直角坐標(biāo)系,如圖,則,設(shè)平面ABP的一個法向量為,則,取x=1,則,,所以,設(shè)直線PC與平面PAB所成角為,則,所以直線PC與平面PAB所成角的正弦值為.14、15【解析】根據(jù)遞推公式,依次代入即可求解.【詳解】數(shù)列滿足,當(dāng)時,可得,當(dāng)時,可得,當(dāng)時,可得,故答案為:15.15、【解析】建立直角坐標(biāo)系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標(biāo)系,設(shè)雙曲線的標(biāo)準(zhǔn)方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標(biāo)為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:16、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:7三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當(dāng)直線l的斜率存在時,設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,由消去y并整理得:,設(shè),則,,,,,,要使為定值,必有,解得,此時,當(dāng)直線l的斜率不存在時,由對稱性不妨令,,,當(dāng)時,,即當(dāng)時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1);(2).【解析】(1)由短軸長得,由離心率處也的關(guān)系,從而可求得,得橢圓方程;(2)設(shè),,直線的方程為,代入橢圓方程應(yīng)用韋達定理得,由弦長公式得弦長,求出原點到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設(shè),則,弦長,點到直線的距離,所以的面積,令,則,當(dāng)且僅當(dāng)時取等號.所以,對應(yīng)的,可解得,滿足題意19、(1);(2).【解析】(1)設(shè)出圓N與l的公共點坐標(biāo),再探求出點N的坐標(biāo),并由圓的性質(zhì)列出方程化簡即得.(2)設(shè)出直線AB的方程,與的方程聯(lián)立,結(jié)合已知條件并借助韋達定理計算作答.【小問1詳解】設(shè)為圓N與l的公共點,而直線軸,垂足為H,則,又,,于是得,因O,P在圓N上,即,則有,化簡整理得:,所以的方程為.【小問2詳解】顯然直線AB不垂直于y軸,設(shè)直線AB的方程為,,由消去x并整理得:,則,因為,則點A到x軸距離是點B到x軸距離的2倍,即,由解得或,則有,因此有,所以.20、(1)(2)【解析】(1)設(shè)的公差為,由等差數(shù)列的通項公式結(jié)合條件可得答案.(2)由(1)可得,由錯位相減法可得答案.【小問1詳解】設(shè)的公差為,由已知得且,解得,,所以的通項公式為【小問2詳解】由(1)可得,所以,所以,兩式相減得:,所以,所以21、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結(jié)合即可求P的軌跡方程;(2)假設(shè)存在T(0,t),設(shè)AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論