版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
地理信息科學(xué)進(jìn)展地理空間大數(shù)據(jù)Big
Geo-Spatial
DataBig
DataGartner
Big
data
is
high
volume,
high
velocity,
and/or
high
varietyinformation
assets
that
require
new
forms
of
processing
to
enabenhanced
decision
making,
insight
discovery
and
processoptimization.(Douglas
2012)CharacteristicsVolumeVarietyVelocityVariabilityVeracityComplexityChallengesAnalysisCaptureData
curationSearchSharingStorageTransferVisualizationInformation
privacyTools
for
Big
DataSTACKELEMENTUSED
FOROPEN
SOURCEEXAMPLESCOTS
EXAMPLESVisualizationUser
InterfaceWeb-based
ToolsGephi,D3js,OzoneTableau,
Centrifuge,Visual
AnalyticsAnalyticsMachine
learningStatistical
toolsSAS,MapR,SPSS,PalanCrData
StoreData
&
MetadataSource
DataIndexesR,Titan,Spark,Hive,HDFS,Mahout,OpenCV,Lumify,PigAccumulo,MongoDB,
Cassandra,Titan,
Neo4j,MySQLOracle,YarcData,Marklogic,TeradataIngestTransformaCon
/
NormalizaConIngest
/
Streams
ProcessingStorm,Hadoop/MapReduceSplunk,
SAS,Oracle,
IBMInfrastructure(IaaS,
PaaS)CM,
Scheduling,
MonitoringApplication
Operating
SystemsComputers,
NetworksLinux,Puppet,Oozie,HDFS,JBoss,OpenShift,OpenStack,Zookeeper,Kafka,XymonAWS,
Azure,Cloudera,
Red
Hat,Rackspace,vendor
SpecificBig
Geospatial
DataGeography
and
big
data
(Graham
2013)
Much
of
big
data
are
geographic
in
nature
and
contaeither
explicit
or
implicit
spatial
information,
…fundamentally
new
ways
of
knowing,
enacting
and
beithe
world.
Big
data
allow
us
to
objectively
measure
and
map
thworld
as
it
actually
is
in
order
to
arrive
atfundamental
truths.Big
geospatial
data4V:
Volume,
Velocity,
Variety,
Valueassociated
with
an
individualwith
spatio-temporal
tag
taxi
trajectories,
mobile
phone
records,
social
medsocial
networking
data,
smart
card
records
in
publiSocial
SensingSocial
Sensing
(Liu
2015)
Social
sensing
refers
to
a
category
of
spatio-temporally
taggedbig
data
that
provide
an
observatory
for
human
behavior,
as
welas
the
methods
and
applications
based
on
such
big
data.
The
major
objective
of
social
sensing
is
to
detect
socio-economcharacteristics
in
geographical
space
and
thus
it
can
be
vieweda
complement
to
remote
sensing.urban
area
of
Shanghaicheck-in
pointsdrop-off
pointspick-up
pointspopulation
densityfrequency
distributionsglobal
temporal
variationslocal
temporal
variationsArchitecture
of
Social
SensingApplications
of
Social
Sensing
(1)ensitiesSensing
temporal
activity
variatPiicko-unps
and
drop-offs
of
Taxi
Trips,
Shanghai
(Liu
2012)Temporal
patternsDiurnal
rhythm
of
activity
dMobile
phonecalls,
Harbin(Kang
2012)Difference
of
pick-ups
and
drop-offs
of
Taxi
Trips,
Shanghai
(Lcheck-in
activitiesin
citiesof
ChinaApplications
of
Social
Sensing
(2)ns
or
citiesSensing
spatial
interactionsspatial
interactionindividual:
social
tiescollective:
interactions
between
regiospatially-embedded
network(Liu
2014)Spatial
interaction
inside
a
cityand
Community
detectionfrom
the
network
formed
by
taxi
flows(Liu
2012)Flows
between
sub-regionAnd
the
temporal
variatioApplications
of
Social
Sensing
(3)Sensing
place
semantics
and
sentimentsFlickrphotos
in
ParisThe
200
most
frequent
tagsThe
kernel
density
estimation
of
the
geo-tagged
photosassociated
with
Eiffel
Tower
and
Seine
RiverToponym
co-occurrence
in
Web
pages,
and
Regionalization
(Liu
2014)IdentifyinghotspotsfromsocialmediadUrban
ComputingUrban
Computing
(Zheng
2014)
Urban
computing
is
a
process
of
acquisition,
integration,
andanalysis
of
big
and
heterogeneous
data
generated
by
a
diversityof
sources
in
urban
spaces,
such
as
sensors,
devices,
vehicles,buildings,
and
human,
to
tackle
the
major
issues
that
cities
fae.g.
air
pollution,
increased
energy
consumption
and
trafficcongestion.
Urban
computing
connects
unobtrusive
and
ubiquitous
sensingtechnologies,
advanced
data
management
and
analytics
models,
annovel
visualization
methods,
to
create
win-win-win
solutions
thimprove
urban
environment,
human
life
quality,
and
city
operatisystems.
Urban
computing
also
helps
us
understand
the
nature
of
urbanphenomena
and
even
predict
the
future
of
cities.Contents
of
Urban
ComputingUrban
sensing
and
data
acquisitionunobtrusively
and
continually
collect
data
in
a
citywide
scalea
variety
of
sensors:
mobile
phones,
vehicles,
cameras,
loops,
human
as
a
sensor:
user
generated
content
(check
in,
photos,tweets)trade
off
among
energy,
privacy
and
the
utility
of
the
dataloose-controlled
and
nonuniform
distributed
sensorsunstructured,
implicit,
and
noise
dataComputing
with
heterogeneous
data
sourceslearn
mutually
reinforced
knowledge
from
heterogeneous
databoth
effective
and
efficient
learning
abilitydata
management
+
mining
+
machine
LearningvisualizationHybrid
systems
blending
the
physical
and
virtual
worldsserving
both
people
and
cities
(virtually
and
physically)hybrid
systems:
mobile
+
cloud,
crowd
sourcing,
participatoryArchitecture
of
Urban
ComputingApplications
of
Urban
Computing
(1)Finding
the
underlying
problem
of
Beijing’s
road
network
using
taxi
trajectories
(Zheng
2011,
Yuan
2012)Identifying
functional
regions
in
a
city
using
human
mobility
and
POIs
(Yuan
&
Zheng
2012)Applications
of
Urban
Computing
(2)T-Drive:
driving
directions
based
on
taxi
trajectories
(Yuan
and
Zheng
2010,
2011,
2013)Improving
taxi
services.
T-Finder
(Yuan
and
Zheng
2011,
2014),
T-Share
(Ma
and
Zheng
2013])Applications
of
Urban
Computing
(3)Monitoring
real-time
and
fine-grained
air
qualityusing
big
data
(Zheng
2013,
2014)Diagnosing
the
noise
pollution
of
New
York
City
(Zheng
2014)Inferring
gas
consumption
and
pollution
emission
from
vehiclesbased
on
sparse
trajectories
(Shang
&
Zheng
2014)Applications
of
Urban
Computing
(4)Detecting
anomalies
from
urban
traffic
based
on
distance
(Liu
&
Zheng2011)時(shí)空大數(shù)據(jù)的數(shù)據(jù)模型時(shí)空位置模型錨點(diǎn)建模靜態(tài)位置、或時(shí)空過程中停留時(shí)間較長的位置P
=(x,y,T,W)或P
=(g,T,W)時(shí)空軌跡模型移動(dòng)對象模型為主體,一組離散的時(shí)空點(diǎn)序列Tr
=
(o,
{x1,y1,t1}…
{xj,yj,tj}…)時(shí)空交互模型兩個(gè)位置對象之間交互量的時(shí)間變化模型F(Pi→Pj)
=
(xi,
yi,
xj,
yj,
T,
WPi→Pj)F(Pi→Pj)
=
(gi,
gj,
T,
WPi→Pj)時(shí)空網(wǎng)絡(luò)模型點(diǎn)對象之間的時(shí)態(tài)交互映射為圖結(jié)構(gòu)G
=
(V,
E)時(shí)空位置大數(shù)據(jù)Place
&
LocationPosition
DataPoint
of
Interest
(POI)Area
of
Interest
(AOI)Place
nameTextWebSearch
EngineGeotagged
DataTextPhotoSocial
media……百度定位大數(shù)據(jù):熱力圖GeoTagTaggingTagging
is
a
classic
way
for
users
to
annotate
user-generated
conten
The
vocabulary
system
is
entirely
flat
and
directly
reflect
the
concand
linguistic
structure
of
the
users
and
their
diverse
geographicalcultural
backgrounds
(Guy
2006)Geotag
Geotag:
contains
geographic
coordinates,
extent,
shape,
or
feature
tinformation.Geotaggingassigns
geographic
locations
to
content
(Amitay
2004
)refers
to
“tagging”
georeferenced
metadata
to
a
document
or
other
contentWikipedia
Geotaguses
single
points
and
bounding
rectanglesgeoreferenced
information
is
embedded
into
articles
using
one
of
manymicroformats
and
extensions
to
Wikitext
,
Wikipedia’s
content
markup
languagGeotagged
Social
media
dataGeotagged
TweetsGeotagged
Flickr
photosGeotagged
YouTube
videosExploring
Urban
Areas
of
InterestUrban
AOIs/SP_DEMOS/UrbanAOIsUsing
Flickr
dataGeneral
metadatalocations,
time,
photo
id,
owner
id,
server
id,…Text
tagswhat
are
people
talking
about
here?Photoswhat
are
people
looking
at
here?檢索大數(shù)據(jù):百度旅游檢索《心花路放》熱映火了“梧桐客?!薄靶陆z綢之路經(jīng)濟(jì)帶”的發(fā)展帶動(dòng)西部旅游百度檢索大數(shù)據(jù):預(yù)測旅游每天消費(fèi)者在百度平臺(tái)的旅游類搜索超過2200萬次覆蓋旅游人群2.12億其中無線端覆蓋人群1.77億。通過海量檢索行為,預(yù)測旅游市場趨勢國內(nèi)旅游景點(diǎn)可以提前2天預(yù)測國內(nèi)城市旅游可以提前45天預(yù)測出國旅游可以提前45天預(yù)測國內(nèi)游檢索大數(shù)據(jù)與市場數(shù)據(jù)呈現(xiàn)相同的增長趨勢兩者表現(xiàn)出強(qiáng)正相關(guān)出境游檢索數(shù)據(jù)提前預(yù)知市場數(shù)據(jù)白色:檢索數(shù)據(jù)橙色:市場數(shù)據(jù)12·31上海外灘踩踏事件分析12·31上海外灘踩踏事件2014年12月31日23時(shí)35分許,跨年夜活動(dòng)外灘陳毅廣場進(jìn)入和退出的人流對沖發(fā)生踩踏事件大數(shù)據(jù)分析(百度研究院大數(shù)據(jù)實(shí)驗(yàn)室)當(dāng)時(shí)的人流量大到什么程度?事發(fā)當(dāng)時(shí)是否是當(dāng)晚人流量最大的時(shí)候?當(dāng)時(shí)人流的對沖到底是什么樣的程度?群體聚集是突發(fā)情況,可以預(yù)警嗎?人群熱力圖人群流量趨勢圖上海外灘踩踏事件大數(shù)據(jù)分析(1)中秋前夜(2)國慶當(dāng)晚(3)跨年當(dāng)晚人群分布熱力圖人群流動(dòng)方向圖人群流動(dòng)方向分布外灘地圖搜索與人群到達(dá)數(shù)量的互相關(guān)性互相關(guān)性曲線在-1.5小時(shí)的時(shí)候達(dá)到峰值:根據(jù)地圖上相關(guān)地點(diǎn)搜索的請求量,至少可能提前幾十分鐘預(yù)測出人流量峰值的到來時(shí)空軌跡大數(shù)據(jù)按采樣方式和驅(qū)動(dòng)因素分類(李婷2014)基于等時(shí)間間隔采樣的軌跡數(shù)據(jù),如車載GPS數(shù)據(jù)基于位置采樣的軌跡數(shù)據(jù),如居民出行調(diào)查數(shù)據(jù)基于事件觸發(fā)的軌跡數(shù)據(jù),如手機(jī)定位數(shù)據(jù)、公交車刷卡數(shù)據(jù)按涉及的交通出行方式分類(周濤2013)單一出行方式數(shù)據(jù),如出租車、公交車數(shù)據(jù)等混合出行方式數(shù)據(jù),如手機(jī)、簽到數(shù)據(jù)等按采集的位置信息格式分類基于GPS的軌跡數(shù)據(jù),有精確的經(jīng)緯度信息,如出租車、微博簽到等
基于參考點(diǎn)的軌跡數(shù)據(jù),如手機(jī)定位數(shù)據(jù)、公交車/地鐵刷卡數(shù)據(jù)、wifi數(shù)據(jù)等Trajectory
Data
MiningSpatial
Trajectories
Computing
Framework
(Zheng
2015)人類移動(dòng)性(human
mobility)面向人的活動(dòng)模式研究每個(gè)人的活動(dòng)如同分子運(yùn)動(dòng),看似雜亂無序,實(shí)則存在潛在的模式發(fā)現(xiàn)這種模式并揭示其影響因素,需要采集海量的時(shí)空軌跡數(shù)據(jù)基于時(shí)空軌跡大數(shù)據(jù)的移動(dòng)性研究特征量分析和特征建模時(shí)間空間研究對象個(gè)體群體驅(qū)動(dòng)機(jī)制基于移動(dòng)的模式基于活動(dòng)的模式百度遷徙人類移動(dòng)性:時(shí)間特征時(shí)間特征量:間隔時(shí)間人類行為在時(shí)間上具有驚人相似的統(tǒng)計(jì)規(guī)律(周濤2013)
間隔時(shí)間和等待時(shí)間的分布,在絕大多數(shù)情況下具有胖尾的特性,很多可以用冪律分布較好刻畫(Barabasi
2005)人類行為在發(fā)生時(shí)間上具有“強(qiáng)陣發(fā)弱記憶”的特性(Goh
2008)陣發(fā)性:事件會(huì)在較短時(shí)間內(nèi)密集發(fā)生,然后又會(huì)出現(xiàn)一個(gè)很長的空檔期記憶性:長的時(shí)間間隔后容易跟著一個(gè)也較長的時(shí)間間隔,而短的時(shí)間間隔后面容易跟著一個(gè)也較短的時(shí)間間隔人類行為具有明顯的波動(dòng)性和周期性(Ahas
2010)時(shí)間特征建?;趦?yōu)先級的排隊(duì)論模型,可以很好解釋等待時(shí)間的冪律分布(Barabasi
2005)
歷史記憶特性(Vazquez
2007)、興趣變化(Han
2008)以及生理周期和工作周期的影響(Hidalgo
2006)人類移動(dòng)性:空間特征量(1)步長分布
基于多個(gè)城市的出租車數(shù)據(jù)發(fā)現(xiàn),移動(dòng)步長一般在城市尺度內(nèi)表現(xiàn)為指數(shù)分布,在城市間或者更高尺度內(nèi)表現(xiàn)為冪律分布(Liang
2013)
針對混合交通方式出行,移動(dòng)步長服從冪律或截?cái)嘈蛢缏煞植?;而對于單一交通方式,則服從指數(shù)或近似指數(shù)分布(陸鋒2014)
利用手機(jī)數(shù)據(jù)發(fā)現(xiàn),群體移動(dòng)步長服從尾部截?cái)嗟膬缏煞植?。?shí)際是個(gè)體的Levy移動(dòng)和人群異質(zhì)性卷積的效果(Gonzalez
2008)
群體水平上人類移動(dòng)步長的冪律分布可能是移動(dòng)模式各不相同的若干個(gè)體混合所致的,并不能據(jù)此推斷每個(gè)個(gè)體的移動(dòng)步長也服從相同的分布規(guī)律
在個(gè)體水平上,人類的移動(dòng)步長分布呈現(xiàn)不規(guī)則的多樣化特征,并不服從某種特定的分布形式角度分布隨機(jī)游走模型中,假設(shè)角度分布是均勻的
由于受到道路網(wǎng)、地理環(huán)境的影響,角度分布會(huì)出現(xiàn)各向異性的特點(diǎn)
(Liu
2012,Jiang
2009)人類移動(dòng)性:空間特征量(2)回轉(zhuǎn)半徑(ROG)
利用手機(jī)數(shù)據(jù)發(fā)現(xiàn),人類空間運(yùn)動(dòng)具有高度的有界性特征(Gonzalez2008)每個(gè)個(gè)體都在一個(gè)以家和工作地點(diǎn)為中心的有限范圍內(nèi)活動(dòng)距離家或工作地越近的地點(diǎn)被個(gè)體訪問的頻率就越高人類的空間運(yùn)動(dòng)范圍具有局域化的特點(diǎn)無論是軌跡的均方位移、回轉(zhuǎn)半徑還是時(shí)空概率密度函數(shù),增長速度都慢于具有相同參數(shù)的Lévy飛行模型熵個(gè)體軌跡序列的信息熵(Song
2010)平均意義上,手機(jī)用戶在下一小時(shí)所在地點(diǎn)的不確定性只有20.8人類空間模式具有93%的可預(yù)測性人類移動(dòng)性:空間特征建模移動(dòng)模式建模考慮的因素(劉瑜2014)地理環(huán)境、距離衰減以及個(gè)體的空間行為特征重力模型對于地理環(huán)境和距離衰減的影響,通常采用重力模型以及其改進(jìn)模型采用重力模型解釋上海市出租車出行步長分布呈截?cái)鄡缏商卣鞣菍Φ鹊闹亓δP停玫亟忉屃顺鲎廛囈苿?dòng)步長的分布特征(Liang
2013)輻射模型(Simini
2012):直接采用人口數(shù)作為區(qū)域規(guī)模來檢查重力模型并不合個(gè)體空間行為特征建模偏好返回模型(Song
2010)人類同時(shí)具有探索未知地點(diǎn)和返回之前熟悉地點(diǎn)的傾向基于層次性交通系統(tǒng)的人類運(yùn)動(dòng)模型(Han
2011)人們進(jìn)行日常的長途旅行時(shí),經(jīng)常通過大的交通中心進(jìn)行中轉(zhuǎn)帶有返家機(jī)制的Lévy飛行模型(Hu
2011)基于個(gè)體在游走的過程中希望訪問更多不同的地點(diǎn),以獲取盡可能多樣的信息的假設(shè),將其轉(zhuǎn)為信息熵優(yōu)化模型基于個(gè)體的活動(dòng)轉(zhuǎn)移模型(Wu
2014)集成個(gè)體活動(dòng)鏈轉(zhuǎn)移概率、地理環(huán)境異質(zhì)性以及距離衰減等因素NetworksNetworknodes
–
links
structurerandom
networkComplex
Networka
graph
(network)
with
non-trivial
topological
featuresfeatures
that
do
not
occur
in
simple
networks
(lattices
or
random
graphs),but
often
occur
in
graphs
modelling
real
systemsScale-free
networkspower-law
degree
distributionsSmall-world
networksshort
path
lengths
(small
diameter),
and
high
clusteringsmall-world
phenomenon
(six
degrees
of
separation)Social
Network
a
social
structure
made
up
of
a
set
of
social
actors
(such
as
individor
organizations)
and
a
set
of
the
dyadic
ties
between
these
actors.Spatial
NetworkSpatialNetwork
(Barthélemy
2011)
a
network
for
which
the
nodes
are
located
in
a
space
equippedwith
a
metric.space
is
the
two-dimensional
space
and
the
metric
is
the
usualEuclidean
distancelinks
are
not
necessarily
embedded
in
space
the
probability
of
finding
a
link
between
two
nodes
will
decreawith
the
distancethe
connection
probability
between
two
individuals
usually
decreawith
the
distance
between
themSpatial
network
typologyplanar
networksa
network
with
no
crossing
componentsfor
many
applications,
planar
spatial
networks
are
the
most
imporroads,
rail,
rail,
and
other
transportation
networks.it
does
not
imply
that
a
spatial
network
is
always
planarspatial,
non-planar
networksairline
network,
the
cargo
ship
network,
or
the
InternetCategoreis
of
Spatial
NetworksTransportation
networksairline
networksbus,
subway,
and
railway,
networkscargo
ship
networkscommuters
networksInfrastructure
networksroad
and
street
networkspower
grids
networkswater
distribution
networksInternetgeography
in
social
networksOrigin-destination
matrix
and
mobility
networksMobile
phone
and
GPSRFIDs
(Radio
Frequency
Identification)Gravity
Law
for
Spatial
NetworksThe
gravity
law
the
number
of
trips
from
location
i
to
location
j
follows
the‘Gravity’
law
(Erlander
1990)dij
is
the
Euclidean
distance
between
these
two
locationsPi(j)is
the
population
at
location
i(j)σ
is
an
exponent
whose
value
act
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年金融服務(wù)合作意向書
- 川教版六上合并
- 建筑項(xiàng)目雇傭合同范本
- 官方住宅購房合同模板
- 餐具與食物建構(gòu)課程設(shè)計(jì)
- 工程安全生產(chǎn)文明施工協(xié)議
- 店鋪出租合同協(xié)議書范本
- 現(xiàn)代文閱讀Ⅰ滿分攻略-2025年高考語文一輪復(fù)習(xí)解析版
- 2024年餐飲承包經(jīng)營合同范本
- 外協(xié)加工保密協(xié)議書范文
- 《中國創(chuàng)業(yè)培訓(xùn)》課件
- 我的文檔不想自動(dòng)發(fā)布的副本11-恢復(fù)1
- 醫(yī)院人文培訓(xùn)課件
- 自動(dòng)噴水滅火系統(tǒng)故障排查
- 高校新生消防安全培訓(xùn)課件
- 透析中低血壓的預(yù)防及防治
- Part1-2 Unit5 Ancient Civilization教案-【中職專用】高一英語精研課堂(高教版2021·基礎(chǔ)模塊2)
- 安全培訓(xùn)考試試題(壓路機(jī)操作工)
- 漢江臨泛完整版本
- 鋼廠拆除施工方案
- 麻醉科PDCA持續(xù)改進(jìn)麻醉術(shù)后鎮(zhèn)痛
評論
0/150
提交評論