山東省濟寧市汶上一中2024屆數(shù)學高一第二學期期末質(zhì)量檢測試題含解析_第1頁
山東省濟寧市汶上一中2024屆數(shù)學高一第二學期期末質(zhì)量檢測試題含解析_第2頁
山東省濟寧市汶上一中2024屆數(shù)學高一第二學期期末質(zhì)量檢測試題含解析_第3頁
山東省濟寧市汶上一中2024屆數(shù)學高一第二學期期末質(zhì)量檢測試題含解析_第4頁
山東省濟寧市汶上一中2024屆數(shù)學高一第二學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省濟寧市汶上一中2024屆數(shù)學高一第二學期期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在正四棱錐中,,側(cè)面積為,則它的體積為()A.4 B.8 C. D.2.的弧度數(shù)是()A. B. C. D.3.經(jīng)過,兩點的直線方程為()A. B. C. D.4.在中,,,,則的面積是().A. B. C.或 D.或5.的內(nèi)角的對邊分別為成等比數(shù)列,且,則等于()A. B. C. D.6.已知角的終邊經(jīng)過點,則=()A. B. C. D.7.已知,則().A. B. C. D.8.在中,點滿足,則()A. B.C. D.9.下列結(jié)論正確的是().A.若ac<bc,則a<b B.若a2<C.若a>b,c<0,則ac<bc D.若a<b10.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.12.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為______.13.已知函數(shù),的最大值為_____.14.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.15.已知,若方程的解集為,則__________.16.如圖是一個算法的流程圖,則輸出的的值是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求不等式的解集.18.已知向量,(1)若,求;(2)若,求.19.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.20.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.(1)求的值;(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;21.某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:月份123456銷售量x(萬件)1011131286利潤y(萬元)222529261612附:(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

連交于,連,根據(jù)正四棱錐的定義可得平面,取中點,連,則由側(cè)面積和底面邊長,求出側(cè)面等腰三角形的高,在中,求出,即可求解.【題目詳解】連交于,連,取中點,連因為正四棱錐,則平面,,側(cè)面積,在中,,.故選:A.【題目點撥】本題考查正四棱錐結(jié)構(gòu)特征、體積和表面積,屬于基礎(chǔ)題.2、B【解題分析】

由角度與弧度的關(guān)系轉(zhuǎn)化.【題目詳解】-150.故選:B.【題目點撥】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.3、C【解題分析】

根據(jù)題目條件,選擇兩點式來求直線方程.【題目詳解】由兩點式直線方程可得:化簡得:故選:C【題目點撥】本題主要考查了直線方程的求法,還考查了運算求解的能力,屬于基礎(chǔ)題.4、C【解題分析】,∴,或.()當時,.∴.()當時,.∴.故選.5、B【解題分析】

成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【題目詳解】解:成等比數(shù)列,,又,,則故選B.【題目點撥】本題考查了等比數(shù)列的性質(zhì)、余弦定理,考查了推理能力與計算能力,屬于中檔題.6、D【解題分析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點:三角函數(shù)的概念.7、C【解題分析】

分子分母同時除以,利用同角三角函數(shù)的商關(guān)系化簡求值即可.【題目詳解】因為,所以,于是有,故本題選C.【題目點撥】本題考查了同角三角函數(shù)的商關(guān)系,考查了數(shù)學運算能力.8、D【解題分析】

因為,所以,即;故選D.9、C【解題分析】分析:根據(jù)不等式性質(zhì)逐一分析即可.詳解:A.若ac<bc,則a<b,因為不知道c的符號,故錯誤;B.若a2<可令a=-1,b=-2,則結(jié)論錯誤;D.若a<b,則點睛:考查不等式的基本性質(zhì),做此類題型最好的方法就是舉例子注意排除即可.屬于基礎(chǔ)題.10、C【解題分析】由題意,得,設(shè)過的拋物線的切線方程為,聯(lián)立,,令,解得,即,不妨設(shè),由雙曲線的定義得,,則該雙曲線的離心率為.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

代入分式利用同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導公式化簡即可.【題目詳解】.故答案為:2【題目點撥】本題考查同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導公式,屬于基礎(chǔ)題.12、【解題分析】

根據(jù)三角函數(shù)圖象依次求得的值.【題目詳解】由圖象可知,,所以,故,將點代入上式得,因為,所以.故.故答案為:【題目點撥】本小題主要考查根據(jù)三角函數(shù)的圖象求三角函數(shù)的解析式,屬于基礎(chǔ)題.13、【解題分析】

化簡,再利用基本不等式以及輔助角公式求出的最大值,即可得到的最大值【題目詳解】由題可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值為故答案為【題目點撥】本題考查三角函數(shù)的最值問題,涉及二倍角公式、基本不等式、輔助角公式等知識點,屬于中檔題。14、【解題分析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.15、【解題分析】

將利用輔助角公式化簡,可得出的值.【題目詳解】,其中,,因此,,故答案為.【題目點撥】本題考查利用輔助角公式化簡計算,化簡時要熟悉輔助角變形的基本步驟,考查運算求解能力,屬于中等題.16、【解題分析】由程序框圖,得運行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2),【解題分析】

(1)由余弦函數(shù)單調(diào)區(qū)間的求法,解不等式即可得解;(2)解三角不等式即可得解.【題目詳解】解:解:(1)令,,解得,,故的單調(diào)遞增區(qū)間為,.(2)因為,所以,即,所以,,解得,.故不等式的解集為,.【題目點撥】本題考查了余弦函數(shù)單調(diào)區(qū)間的求法,重點考查了三角不等式的解法,屬基礎(chǔ)題.18、(1)3;(2)或【解題分析】

(1)由,得,又由,即可得到本題答案;(2)由,得,即,由此即可得到本題答案.【題目詳解】解:(1)由,得,即,(2)由,得,即,又,解得或.【題目點撥】本題主要考查平面向量與三角函數(shù)求值的綜合問題,齊次式法求值是解決此類問題的常用方法.19、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解題分析】

(1)計算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時θ的值;

(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【題目詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2,它的最小正周期為Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z.【題目點撥】本題考查了平面向量的數(shù)量積計算問題,也考查了三角函數(shù)的圖象與性質(zhì)的應用問題,是基礎(chǔ)題.20、(1);(2),乙組加工水平高.【解題分析】

(1)根據(jù)甲、乙兩組數(shù)據(jù)的平均數(shù)都是并結(jié)合平均數(shù)公式可求出、的值;(2)利用方差公式求出甲、乙兩組數(shù)據(jù)的方差,根據(jù)方差大小來對甲、乙兩組技工的加工水平高低作判斷.【題目詳解】(1)由于甲組數(shù)據(jù)的平均數(shù)為,即,解得,同理,,解得;(2)甲組的個數(shù)據(jù)分別為:、、、、,由方差公式得,乙組的個數(shù)據(jù)分別為:、、、、,由方差公式得,,因此,乙組技工的技工的加工水平高.【題目點撥】本題考查莖葉圖與平均數(shù)、方差的計算,從莖葉圖中讀取數(shù)據(jù)時,要注意莖的部分數(shù)字為高位,葉子部分的數(shù)字為低位,另外,這些數(shù)據(jù)一般要按照由小到大或者由大到小的順序排列.21、(1);(2)見解析.【解題分析】

(1)求出,由公式,得的值,從而求出的值,從而得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論