




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古巴彥淖爾市臨河三中2024屆高三最后一模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數(shù),,,,則,,的大小關系為()A. B. C. D.2.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.13.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.24.設集合,,則().A. B.C. D.5.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-327.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.8.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題9.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.1110.已知集合,則()A. B. C. D.11.在中,,則=()A. B.C. D.12.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.14.已知定義在上的函數(shù)的圖象關于點對稱,,若函數(shù)圖象與函數(shù)圖象的交點為,則_____.15.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.16.已知點是拋物線的準線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.18.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.19.(12分)己知函數(shù).(1)當時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.20.(12分)在中,內角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.21.(12分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網(wǎng)上問卷調查,民眾參與度極高,現(xiàn)從大批參與者中隨機抽取200名幸運參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計結果如下:組別頻數(shù)5304050452010(1)若此次問卷調查得分整體服從正態(tài)分布,用樣本來估計總體,設,分別為這200人得分的平均值和標準差(同一組數(shù)據(jù)用該區(qū)間中點值作為代表),求,的值(,的值四舍五入取整數(shù)),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機會,得分不低于的可獲得2次抽獎機會,在一次抽獎中,抽中價值為15元的紀念品A的概率為,抽中價值為30元的紀念品B的概率為.現(xiàn)有市民張先生參加了此次問卷調查并成為幸運參與者,記Y為他參加活動獲得紀念品的總價值,求Y的分布列和數(shù)學期望,并估算此次紀念品所需要的總金額.(參考數(shù)據(jù):;;.)22.(10分)某公司打算引進一臺設備使用一年,現(xiàn)有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設備5103050乙設備05151515(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學期望為決策依據(jù),希望設備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設備?請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先判斷函數(shù)在時的單調性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調性,比較出三個數(shù)的大小.【詳解】當時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調性是解題的關鍵.2、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.3、B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.4、D【解析】
根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,5、B【解析】
構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.6、A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質,等差數(shù)列的等和性應用能快速求得結果.7、A【解析】
如圖設平面,球心在上,根據(jù)正四面體的性質可得,根據(jù)平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.8、B【解析】
由的單調性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.9、A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.10、C【解析】
解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎題.11、B【解析】
在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.12、C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數(shù)列前項和中最小的是.故選:C.【點睛】本題主要考查等差數(shù)列的性質,等差數(shù)列的通項公式的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.14、4038.【解析】
由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點關于點對稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關于點對稱又函數(shù)的圖象關于點對稱則函數(shù)圖象與函數(shù)圖象的交點關于點對稱則故,即本題正確結果:【點睛】本題考查利用函數(shù)圖象的對稱性來求值的問題,關鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題.15、【解析】
將不等式兩邊同時平方進行變形,然后得到對應不等式組,對的取值進行分類,將問題轉化為二次函數(shù)在區(qū)間上恒正、恒負時求參數(shù)范圍,列出對應不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當時,對且不成立,當時,取,顯然不滿足,所以,所以,解得;當時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關系求解出參數(shù)范圍.16、【解析】
由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據(jù)拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據(jù)雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(Ⅰ)取的中點,連結、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設,則由題意知,,,,,,設平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成,著重考查了分析問題和解答問題的能力.18、(1);(2).【解析】
(1)根據(jù)焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結合函數(shù)單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內單調遞增,所以,即所以【點睛】本題考查了橢圓的標準方程求法,直線與橢圓的位置關系綜合應用,由韋達定理研究參數(shù)間的關系,平面向量的線性運算與數(shù)量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.19、(1)證明見解析(2)證明見解析【解析】
(1)求導得,由,且,得到,再利用函數(shù)在上單調遞減論證.(2)根據(jù)題意,求導,令,易知;,易知當時,,;當時,函數(shù)單調遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數(shù)在上單調遞減,故.(2)依題意,,令,則;而,可知當時,,故函數(shù)在上單調遞增,故當時,;當時,函數(shù)單調遞增,而,又,故,使得,故,使得,即函數(shù)單調遞增,即單調遞增;故當時,,故函數(shù)在上單調遞減,在上單調遞增,故當時,函數(shù)有極小值.【點睛】本題考查利用導數(shù)研究函數(shù)的性質,還考查推理論證能力以及函數(shù)與方程思想,屬于難題.20、(1);(2)【解析】
(1)由已知條件和正弦定理進行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款 民間借貸 合同范本
- 任意健身合同范本
- 醫(yī)院吊頂合同范本
- 醫(yī)師合同范本
- 獸醫(yī)聘用勞動合同范本
- 關于按揭車合同范本
- 個人租賃司機合同范本
- 出口業(yè)務合同范本
- 免租期補充合同范本
- 買賣小區(qū)用地合同范本
- 華文版六年級下冊書法教案
- 生產(chǎn)安全重大事故隱患檢查表(根據(jù)住建部房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2022版)編制)
- 期末模擬測試卷(試卷)2024-2025學年六年級數(shù)學上冊人教版
- 2024屆護士資格考試必考基礎知識復習題庫及答案(共170題)
- 小學生防性侵安全教育主題班會課件
- 幸福心理學智慧樹知到答案2024年浙江大學
- 人教版一年級數(shù)學下冊教案全冊(完整版下載打印)
- 2024至2030年全球及中國消費電子磁阻隨機存取存儲器(MRAM)行業(yè)深度研究報告
- 云南省2023年秋季學期期末普通高中學業(yè)水平考試信息技術(含答案解析)
- 氣血津液(中醫(yī)理論)
- 2024年2型糖尿病中醫(yī)防治指南解讀課件
評論
0/150
提交評論