版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TopActuarialTechnologiesof2022-2023
September|2023
2
Copyright?2023SocietyofActuariesResearchInstitute
TopActuarialTechnologiesof2022-2023
AUTHORSMariannePurushotham,FSA,MAAA
DararithLy,MBA
SPONSORActuarialInnovationandTechnology
StrategicResearchProgramSteering
Committee
CaveatandDisclaimer
TheopinionsexpressedandconclusionsreachedbytheauthorsaretheirownanddonotrepresentanyofficialpositionoropinionoftheSocietyof
ActuariesResearchInstitute,theSocietyofActuariesoritsmembers.TheSocietyofActuariesResearchInstitutemakesnorepresentationorwarrantytotheaccuracyoftheinformation.
Copyright?2023bytheSocietyofActuariesResearchInstitute.Allrightsreserved.
3
Copyright?2023SocietyofActuariesResearchInstitute
CONTENTS
KeyFindings 4
Methodology 6
Section1:TopActuarialTechnologies 8
1.1DataVisualization 8
1.2CloudComputingandStorage 9
1.3PredictiveModeling 10
Section2:NewDataSources 12
Section3:EmergingTechnologies 13
3.1ArtificialIntelligence/MachineLearning 13
3.2Chatbots 13
3.3UnstructuredData 14
Section4:ActuarialCapabilities 15
Section5:ThePathForward 16
Section6:Acknowledgments 17
AppendixA:InterviewGuide 18
AppendixB:SurveyQuestionnaire 19
AboutTheSocietyofActuariesResearchInstitute 29
4
Copyright?2023SocietyofActuariesResearchInstitute
TopActuarialTechnologiesof2022-2023
Overthepastdecade,theemergenceandapplicationofnewtechnologiesandthegrowthofdatasciencehave
presentedbothchallengesandopportunitiesforactuariesandtheroleoftheprofession.Inordertokeepactuariesinformedaboutnewtechnologiesandtheirimpactonthefuturedirectionoftheindustryandtheprofession,theSOAcommissionedLIMRAtoconductaresearchstudyontheTopActuarialTechnologiesof2019toexaminetopactuarialtechnologiescurrentlyinuse,aswellasthoseexpectedtogrowinthefuture.
Thisreportrepresentsthesecondinstallmentoftheongoingseries.TopActuarialTechnologiesof2022-2023providesupdatesonthecurrentandplannedusesofvarioustechnologytypesandtools,highlightsthose
technologiesexpectedtogrowthefastestamongactuariesinthenext12months,andassessesthestatusofadoptionversusexpectationsfrom2019.
KeyFindings
PrimaryActuarialTechnologies
.Thethreemaintechnologiesusedbysurveyrespondentsintheiractuarialworkduring2022-23aredata
visualization,predictivemodeling,andcloudcomputing/storage.Thiswasalsothecaseforthe2019studyoftopactuarialtechnologies.
.Othertechnologieslessoftencitedasusedincurrentactuarialworkincludeblockchain/distributedledgertechnology,versioncontrol/sharedcodingplatforms,androboticprocessautomation.
.Therearealsoemergingtechnologiesthatactuariesexpecttoleverageintheirworkbeyond2023.ThosemostcommonlyidentifiedincludeArtificialIntelligence,MachineLearning,ChatBots,andUnstructuredData.
FrequencyofUse
.Althoughthetopthreetechnologiesinusefor2022-23arethesameasthosecitedin2019,significant
increasesinthefrequencyofuseforthethreemainactuarialtechnologieshaveoccurred.Thepercentageofsurveyrespondentsfrequentlyusingdatavisualization,predictivemodeling,andcloudcomputingtechnologieshasgrownsignificantlysince2019-from42%to60%(datavisualization),16%to40%(predictivemodeling),
and31%to60%(cloudstorageandcomputing).
.Datavisualizationisnotonlythefastestgrowingtechnologyamongactuaries;itisalsousedbymoreactuariescomparedtoothertechnologiesinthesurvey.Intermsofexpectationsregardinggrowthinthetechnologiesusedbeyond2023,actuariesexpecttoseecontinualincreasesintheusageofthethreemaintechnologies,
withnoonesurveyedexpectingtoseeadecrease.
.Factorsdrivingtheincreaseduseofthesetechnologiesincludebothaccountingandregulatorychanges,new
approachestoexperienceanalysisofmortality,morbidity,andbehaviorfactors,andthedrivetowardfasterandmoreeffectiveriskselectiontechniques.
.Dataanalyticsexpertsinterviewedaspartofthisprojectareoptimisticthatactuariesarecapableoflearningnewskills,adapting,andeffectivelyusingnewtechnologiesintheirwork.
5
Copyright?2023SocietyofActuariesResearchInstitute
SoftwareandTools
.PredictivemodelingtoolsmostoftencitedbysurveyedactuariesincludeExcel,R,Python,andSAS.
.DatavisualizationtoolswiththegreatestuseamongsurveyrespondentsincludeMicrosoftOfficeTools(Excel,PowerPoint,Access)(88%ofrespondents),PowerBI(65%ofrespondents)andTableau(47%respondents).
.CloudcomputingandstoragevendorsmostoftencitedbyactuariesincludeMicrosoftAzureCloud(32%)andAmazonWebServices(AWS)(23%).
6
Copyright?2023SocietyofActuariesResearchInstitute
Methodology
Inordertogatherabroadsourceofopinionandinsightregardingnewertechnologiesandtheirapplicationsinactuarialwork,thestudyconsistedofbothqualitativeinterviewsandaquantitativesurvey.AlldatacollectionoccurredbetweenOctober2022andApril2023.
QUALITATIVEINTERVIEWS
Researchersconducted30-minuteinterviewswith18individualswhowereselectedbasedontheirlevelof
involvementwithdataanalyticsandactuarialtechnologyapplicationsfortheirorganization.Ofthe18individuals,14hadalifeandannuityfocus,threehadahealthinsurancefocus,andoneworkedinproperty/casualtyinsurance.Theinterviewquestionsfocusedonthefollowingareas:
.Whattechnologiesareactuariesfrequentlyusingintheircurrentwork?
.Whatdotheyexpecttobeusinginthenext12months?
.Whattechnologiesorareasoftechnologydotheyseeincreasinginthefuture(3-5yearsandbeyond)?
.Howreadyistheactuarialprofessiontousenewtechnologyeffectively?
AninterviewguidewasprovidedtointervieweesinadvanceofthediscussionsandacopyoftheguidecanbefoundinappendixAofthisreport.
QUANTITATIVESURVEY
Followingthe18qualitativeinterviews,ashortquantitativesurveywasdeveloped.Surveyinvitationsweresenttoatargetedsampleofactuariesinthelife,health,retirement,andproperty&casualtyfields,withlineofsightinto
technology,pricing/reserving,andotherfunctions.Thegoalherewastobetterunderstandbroadactuarialprofessionviewsoncurrentandplannedusageofspecifictoolsinvarioustechnologyareas.Thesurveywascompletedby180actuaries.
Basedondiscussionswithinterviewees,thetopactuarialtechnologiesin2022-23werefocusedonthefollowinggeneralareas:
.Datavisualizationisthegraphicalrepresentationofinformationanddatausing
visualelements,suchas
chartsandgraphs,
toprovideameansofidentifyingtrends,outliers,andpatternsindata.
.Predictivemodelingisacommonlyusedsetofstatisticaltechniquestofacilitatethepredictionoffutureoutcomesusinghistoricaldata.
.Cloudstorageisanoffsite,onlinedatastorageandsharingmedium.
.Cloudcomputingisthedeliveryofcomputingservicessuchassoftwareandanalyticstoolsviatheinternet(“thecloud”).Cloudcomputingcanprovidefastercomputingspeedsandeconomiesofscale.
Thesurveyfocusedontheseareas,collectinggreaterdetailregardingspecifictechnicaltoolsusedineachcategory,andthefrequencyofuseofthesetoolsbyactuaries.
Amongthe180surveyrespondents,therewereasmallnumberofinstanceswheremultipleactuariesfromthesamecompanycompletedaresponse.Giventhesmallnumberofinstances,adecisionwasmadetoincludeallindividualsurveyresponsesintheanalysis,regardlessoftheactuary’semployer.
7
Copyright?2023SocietyofActuariesResearchInstitute
SURVEYRESPONDENTPROFILE
Surveyrespondentsrepresentedvariousareasofindustrypractice,withthelargestproportionofrespondents
focusedonthelife,healthandretirementareasinboth2019and2022-23.Therewasaslightlygreaterdiversityofrespondentsin2022-23withgreaterpercentagesofactuariesfromproperty/casualty,othernon-insuranceand
healthareas(figure1a).
Figure1a
SURVEYRESPONDENTPROFILE–PRIMARYAREAOFPRACTICE
2022-23Study
Life
Health
Retirement
Other,noninsurance
Otherinsurance
Property/Casualty
Investment
Management
10%
3%4%1%
1%
6%2%1%
20%42%
15%
50%
20%
26%
2019Study
Also,thereisagoodvarietyintermsoftenureintheactuarialprofession,withaclusterinthe20yearsandlesscategoryandanotherclusterintheover20–30yearcategory(figure1b).Theaveragetenureofactuarial
respondingtothesurveywasjustover21years.
Figure1b
SURVEYRESPONDENTPROFILE–NUMBEROFYEARSINTHEACTUARIALPROFESSION
16.8%
72.6%
10.6%
Under10years
10-30years
Morethan30years
8
Section1:TopActuarialTechnologies
Forpurposesofthisresearch,thetoptechnologiesaredefinedasthosemostfrequentlyidentifiedbyactuariesasexpectedtoincreaseinusageoverthenext12months.Thisdefinitionincludesbothtechnologiescurrentlyusedbytheactuary,aswellasthosethatactuariesarenotusingtodaybutplantobeginusinginthecomingyear.
Thetopthreetechnologiesidentifiedbysurveyrespondentsfor2022-23arethesameasthoseidentifiedby
respondentstothe2019study–datavisualization,predictivemodeling,andcloudcomputingandstorage.Figure2showsthepercentageofrespondentswhoidentifiedthesetoptechnologiesinthe2019and2022-23surveys.Theremainderofthissectionwillexaminetheseresponsesingreaterdetail.
Figure2
TECHNOLOGYAREASEXPECTEDTOGROWFASTESTINTHENEXT12MONTHS*
Datavisualization
PredictiveModeling
Cloudcomputing&storage
0%10%20%30%40%50%60%70%
5
7%
64%
45%
56
51%
%
60%
2019
2022
*Percentagesrepresentthepercentofactuariessurveyedwhobelievetheirusagewillincreaseinthenext12months.
1.1DATAVISUALIZATION
Datavisualizationcontinuestobethemostcommonlycitedtechnologywheregrowthisexpectedforusein
actuarialwork.Fromthecurrentstudy,60%ofsurveyedactuariesutilizedatavisualizationOftenorFrequently,withalmosttwo-thirdsofcurrentusersplanningtoincreasetheirusage(64%),andtheremainingone-thirdexpectingtouseitaboutthesame(figure3).ThemostwidelyuseddatavisualizationtoolsincludeMSOfficeTools(Excel,
PowerPoint,Access)(88%),PowerBI(65%),Tableau(47%),andR/PythonNativeGraphicalTools(41%).
Typically,thesetoolsareusedfordevelopingvisualsforreportsorpresentations(e.g.,pricingormodelingresults,financialresults),fordecision-making(e.g.,predictivemodelselection,assumptionsettingreviews),andforcreatinginteractivedashboardstobeusedfordatareviewandanalysisorforprovidingKeyPerformanceIndicators(KPIs)tolineofbusinessleads.
9
Figure3
CURRENTANDEXPECTEDFUTUREUSEOFDATAVISUALIZATIONBYACTUARIES
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.6
0.64
0.57
0.40.42
0.29
0.18
0.11
Rarely/NoneOccasionalFrequentPlantouseMore
CURRENTUSE
2019Study
2022-23Study
Basedoninterviewsandopen-endedresponses,thistrendisdrivenbyincreasedrecognitionofthevalueofdata
visualizationtoolsinunderstandingandexplainingdata,andtheaccessibilityofmorecentralizeddatasourcesto
actuaries(e.g.,centralizeddatawarehouses).Inaddition,pointandclicktools,likeTableauandPowerBI,aremuchmoreaccessibletotheaverageuserwithamuchquickerlearningperiod.
1.2CLOUDCOMPUTINGANDSTORAGE
Usageofcloudcomputingand/orstoragehasincreasedsignificantlysincethe2019study,fromabout31%usingitfrequentlyoroftento69%in2022-23.Whileoneinthreeexpecttousethistechnologyaboutthesameamount,sixintenanticipateincreasedusage.Thisseemstoverifytheshiftfromstoringdataincentralizedwarehouseson
premisestothird-partystorage,oftencloud-basedproviders.Cloudcomputingismainlybeingusedtofacilitatesharingofdata,allowformoreeffectivecodingcollaboration,andincreasethespeedofcomputationformassivemodelsthatarebeingusedbytheindustryintoday’senvironment.
Basedoninterviewsandopen-endedsurveyresponses,thesechangesarelargelytheresultofmajordata-focusedeffortstorespondtorecentaccountingandregulatorychanges.ImplementationsofIFRS17,LTDI,principles-basedreserving,stochasticmodeling,andpredictivemodelingapplicationswereallcitedasprojectswithcurrentfocusbycompaniesthathavefast-trackedtheneedforgreaterstoragespaceandfasterprocessingspeeds.
Amongthosesurveyed,twoplatformsweremostprevalent–amajority(56%)ofrespondentorganizationsuse
eitherMicrosoftAzureorAmazonWebServices.FarfewermentionedotherservicessuchasSnowflake(18%)andDataBricks(13%).
10
Figure4
CURRENTANDEXPECTEDFUTUREUSEOFCLOUDCOMPUTINGANDSTORAGEAMONGACTUARIES
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.69
0.6
0.51
0.36
0.31
0.18
0.12
0.33
Rarely/NoneOccasionalFrequentPlantouseMore
CURRENTUSE
2019Study
2022-23Study
1.3PREDICTIVEMODELING
Propertyandcasualtyactuarieshavebeenapplyingthesetechniquesformanyyears,andtherestoftheprofessionisincreasinglyfindingnewapplications.Inreviewingtheresponsesinthissection,itisimportanttokeepinmindthatmostoftheintervieweesandsurveyrespondentsarecurrentlyworkinginthelife,healthandretirement
industriesratherthaninproperty/casualty,investmentmanagementorotherinsuranceornon-insuranceareas.
Theuseofpredictivemodelingandresearcharoundpotentialapplicationshasincreasedsubstantiallywithintheactuarialcommunity.In2019,only16%ofsurveyrespondentsindicatedtheywereusingpredictivemodelingoftenorfrequently,whilethefigurehasmorethandoubledforthecurrentreportto40%(figure5).Thiswascoupled
withadecreaseinthosewhoexpecttousepredictivemodelingmoreinthefuture(from56%in2019to45%in2022-23).However,thepotentialincreaseinthenextseveralyearsisstillquitelargeandthedecreaseshouldbeexpectedgiventhesignificantincreaseinfrequentusers.
Figure5
CURRENTANDEXPECTEDFUTUREUSEOFPREDICTIVEANALYTICSAMONGACTUARIES
0.6
0.5
0.4
0.3
0.2
0.1
0
0.56
45
2019Study
2022-23Study
0.45
0.39
0.4
0.
0.32
0.28
0.16
Rarely/NoneOccasionalFrequentPlantouseMore
CURRENTUSE
11
Copyright?2023SocietyofActuariesResearchInstitute
ExcelandRwerethemostcommonlycitedtechnologytoolsusedforpredictivemodeling,with44%and45%ofrespondents,respectively,indicatingthattheyuseoneofbothofthesetoolsintheirwork.ExcelandRwere
followedcloselybyPython,at39%,andSAS(Baseand/orEnterpriseGuideversions)at15%.
Themostcommonlymentionedusecaseforpredictivemodelinginactuarialworkcontinuestobeanalysisand
modeling/forecastingofproductexperience.Thisincludesmortalityandmorbidityexperience,aswellas
policyholderbehaviorfocusedfactors,includinglapseandsurrender,aswellastheutilizationofguaranteedandnon-guaranteedelectedbenefits.Somerespondentstalkedaboutexperimentspairingpredictivemodelingtoolswithbehavioraleconomicsprincipalsinmoreadvancedapplications.Predictivemodelsallowtheactuarytobetterunderstandthekeydriversofproductexperience,allowingformoreaccuratepricingandforecasting.
12
Copyright?2023SocietyofActuariesResearchInstitute
Section2:NewDataSources
Basedoninterviewswithactuariesandsurveyresponsesfromboththe2019and2022-23studies,theutilizationofnewdatasourceshasemergedasanotherfocusforapplicationsofnewactuarialtechnology.Thegrowthinthis
areaseemstobedrivenbyinsurerseffortstounderwritebusiness(lifeandhealthproductswerebothmentioned)
morequickly,butwithoutsignificantlossofriskassessmentaccuracy.Acceleratedunderwritingprogramsarenowprevalentintheindustryandmanyoftheexternaldatasourcescitedbysurveyrespondentsarefocusedinthis
area.
Almosthalfoftheactuariessurveyeduseexternaldata,includingprescriptiondata(48%)andElectronicHealthRecords(EHRs)(48%),asadditionaldatasources.Othercommonexternaldatasourcesincludewearabletrackers(12%)andtelematics(11%)(figure6).SomeInsurTechcompaniesarealsoexamininglinksbetweenmortalityandgeneticinformationorevendentaldatarecords.
Figure6
USEOFNEWSOURCESOFDATA
Unstructureddata TelematicsGenetictesting
Facialrecognition
Wearabletrackers(Fitbit,AppleWatch,etc)PrescriptionData
ElectronicHealthRecords
YesNo
0%10%20%30%40%50%60%70%80%90%100%
Notapplicabletomytypeofinsurancecompany/Unknown
Whiletechnologythatallowscompaniestoaccessprescriptioninformationhasbeeninuseforadecadeormore,theuseofelectronichealthrecordsisnewtomanycompanies.TheabilityofEHRtoallowcompaniestodirectly
accesshealthrecordscouldreplacethelargelymanualandexpensiveprocessofobtainingphysicianhealthrecords,allowforamorecomprehensivehealthdataprofile,andultimatelyleadtoabetterandlesscostlyriskselection
process.
Despitesignificantlylowercurrentadoption,somenewdatasourceswarrantamention,includinginternet-of-things(IoTs),dronetechnology,facialrecognition,andgenetictesting.Companiesareexploringdatasourcedthrough
fitnesstrackersandtelematics.Theseeffortshaveproducedimmenseamountsofdatacausingchallengesinstorage,understanding,anddefiningapplicableuses.
13
Copyright?2023SocietyofActuariesResearchInstitute
Section3:EmergingTechnologies
Inthethreeyearssincethe2019reportwaspublished,theadoptionandutilizationoftopactuarialtechnologies
increasedatafastpace.Atthesametime,newtechnologiescontinuedtoemerge.Thevelocityoftechnological
advancementisvirtuallycertainthateveryyearwillbringnewtoolsforactuariestounderstandandassessfortheirabilitytomakecurrentprocessesmoreefficient,increasethequalityofwork,andmaintainrelevanceinthe
industry.
Intervieweesandsurveyrespondentsidentifiedanumberoftechnologiesthatarenotcurrentlyinwidespreaduse,butareexpectedtogrowinuseamongactuariesinthenearandlongerterm.
3.1ARTIFICIALINTELLIGENCE/MACHINELEARNING
ArtificialIntelligence(AI)wascertainlytopofmindformany,asevidencedbytheinterviewsandopen-endedsurveyresponses.ActuariesinterviewedforthisstudydiscussedthepotentialforassistivetechnologieslikeAIand
machinelearningtorevolutionizetheverynatureofactuarialwork.AIcanbedeployedtoautomateprocesses,
enhanceriskmodeling,andimprovedecision-making.SomeorganizationsarealreadyusingAIforclaimsprocessingandfrauddetection,aswellasacceleratingtheirunderwritingprocesses.Machinelearningalgorithmscananalyzehistoricaldatatomakepredictionsandenhanceriskmanagementstrategies.
TherewerealsoconcernsregardingAIandmachinelearningvoicedbysomeactuaries.Someseethepotentialforautomationtoreplacelower-levelactuarialrolesinthenearfutureandpossiblyevenhigher-leveljobsovertime.
Therewasalsoconcernthattheskillsetrequiredtousemachinelearningmodelseffectivelyandresponsiblymaybemarkedlydifferentfromwhatactuarieshaveusedinthepast.
“Ifeelasthoughthenatureofactuarialtechnologyandworkhasthepotentialtochangedramaticallyoverthenext
fewyearsasactuariesbecomemorefamiliarwithassistivetechnologysuchasAIandmachinelearning.Theskillset
neededtoproperlyusethistechnologymaybequitedifferentfromwhatactuariesareusedto.”
3.2CHATBOTS
Whileonly19%ofrespondentsarecurrentlyusingChatBots(ChatGPT,etc.),another9%areplanningtousethistechnologyinthenext12months.
Intheinsurancesector,ChatBotsarelargelydeployedinsupportareastohandlemoreroutinecustomerserviceorclaimsfunctions.However,ChatBotscollectimportantcustomerdataduringtheseinteractions,whichwouldallowactuariesanddatascientiststoconductdata-drivenanalysisifthatdatacanbecapturedandorganized.
Someactuariesinterviewedforthisstudyarejustbeginningtothinkaboutpotentialusesoftechnologieslike
ChatGPTinactuarialwork.Oneofthecommonlycitedareastobeginexploringistheabilitytoprovidecode
snippetsinlanguageslikeR,Pythonorothercommonlyusedcodinglanguagesandreceiveaquickresponseonhowtocorrectcodelogic.
Wewouldliketopointoutthatutilizationoftechnologieslikethesecouldbelimitedbyinternalgovernance.SomecompaniesarestillevaluatingtheuseofChatGPTand,inthemeantime,haveprohibiteditsuseduetorisk
concerns.Ifapproved,weexpectthepercentageofuserswouldincreasesignificantly.
14
Copyright?2023SocietyofActuariesResearchInstitute
3.3UNSTRUCTUREDDATA
Currently,44%ofsurveyedactuariesuseunstructureddataandanother7%plantouseitinthenext12months.Typically,unstructureddatadoesnothaveapredefineddatamodelororganizationalstructure.Examples
mentionedincluderecordingsortranscriptsofcustomerserviceinteractions,competitorwebsiteinformation,earningscalltranscripts,andinformationfromsocialmediafeedsorothersimilarsources.
Someactuariesseeanopportunitytobetterunderstandkeydriversoflapseandsurrenderbyminingdata
generatedthroughuseofNaturalLanguageProcessingwithcallcenterinteractionsandOpticalContentReadersconvertingpreviouslyanalogdataintoelectronicformats.Todate,actuarieshavetrackedresultsofkeyexperiencefactorsimpactingprofitability,buttheadditionaldatacollectedthroughthesetoolsholdsthepromiseofprovidingexplanationsfortheresultsastheyemerge.
Finally,figure7summarizessomeadditionaltechnologiesmentionedbybothintervieweesandsurveyrespondents,includingroboticprocessautomation,versioncontrolandsharedcodingplatforms(suchasGit),aswellas
distributedledger/blockchaintechnology.Althoughasignificantnumberofrespondentsindicatedtheyworkwithroboticprocessautomation(33%)orversioncontrol/sharedcodingplatforms(43%),blockchainanddistributedledgertechnologieshavenotmadesignificantheadwaywiththissamplepopulation.
Figure7
OTHEREMERGINGTECHNOLOGIES
RoboticProcessAutomation
Versioncontrol/Sharedcodingplatforms
Blockchain
0%10%20%30%40%50%60%70%80%90%100%
YesNoNotapplicabletomytypeofinsurancecompany/Unknown
Inthecontextofthisstudy,roboticprocessautomationreferstotheautomationoftasksthatarecurrently
performedbyactuaries,buthavepotentialtobecompletelyorlargelyautomated,e.g.,automationofstandard
actuarialfinancialreportsthatdrawfrominternaldatasources.Severalintervieweestalkedaboutthecombinationofcentralizedwarehousesmakingdatamuchmoreaccessibletoactuariesandtheemergenceofnewtools,
allowingthemtoeasilypulldataandpopulatestandardreporttemplates.
Expertsbelievethepaceofdevelopmentandintroductionofnewtechnologieswillcontinuefortheforeseeablefuturemeaningthatactuariesneedtobepreparedtoidentify,evaluate,andadoptnewapplicationsinanefficientmannerinordertoremainrelevantasaprofession.
15
Copyright?2023SocietyofActuariesResearchInstitute
Section4:ActuarialCapabilities
Expertsinterviewedaspartofthisprojectareoptimisticthatactuarieswillcontinuetoevolvebylearningnewskillsandeffectivelyusingnewtechnologies.
Whileneweractuariesaregettingmoreexposuretopredictivemodelinganddatasciencetechniquesintheir
training,itismorechallengingforolderactuariestoacquiretheseskills.Manyoftheexpertsinterviewedbelievedtheactuarialprofessionaldevelopmentofferingsshouldintegratemorecodingandpredictivemodelingtechniquesspecificallyinsupportofactuarialfunctionssuchaspricing,reserving,experienceanalysisandassumptionsetting,andmortalitymodeling.
TheSocietyofActuarieshasimplementedchangestobothitsbasiceducationanditsprofessionaldevelopment
programs,includingapredictiveanalyticsexam,anadvancedtopicsinpredictiveanalyticsexam,andanadditionalcertificationinpredictivemodelingtoexpandtheactuarialskillset.
Severalofthoseinterviewedforthisreportfeltthatactuariesshouldnotbetryingtocompetewithdatascientists,butshouldworktomoreeffectivelycomplementeachother.Therequiredskillsetsareoverlappingbut,whiledatascientistsfocusonunderstandingdataandthestatisticalmodelsavailabletomodelthatdata,actuariesare
insuranceandfinancialservicestechnicalexpertswhounderstandthebusiness,theproducts,andtheaccountingandregulatoryfunctionsoftheindustry.Asactuaries,weareuniquelyqualifiedtoworkwithdatascientiststohelpselectandexplainthestatisticalmodelssothattheycanbeleveragedtothegreatestbenefitoftheindustry.
16
Copyright?2023SocietyofActuariesResearchInstitute
Section5:ThePathForward
Thelastquestioninthesurveyallowedactuariestoaddanyadditionalcommentstheyhadregardingthedirectionofactuarialtechnology.
Afewthemesemergehereincluding:
.AutomationandthespeedwithwhichmanybelieveAItechnologywillallowactuariestoeliminatetime-consumingandmanualprocesseswascitedasabenefit.Thiswasalsomentionedasaconcernintermsofhowfutureentry-levelactuarieswillgaintheunderstandingthatcomeswithdoingthework.
.Collaborationwillbecomemorecriticalovertime.Severalexpressedtheimportance
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 月嫂家政服務(wù)合同簽訂與風(fēng)險(xiǎn)防范
- 建筑模板工程分包施工合同
- 簡(jiǎn)易活動(dòng)房安裝合同書范本
- 專業(yè)采購(gòu)合同書樣
- 互聯(lián)網(wǎng)融資居間合同
- 低碳晶板采購(gòu)合同
- 抵押借款合同糾紛的訴訟途徑
- 公司借款合同協(xié)議書示例
- 高新技術(shù)產(chǎn)業(yè)創(chuàng)新平臺(tái)搭建計(jì)劃
- 企業(yè)內(nèi)部通訊系統(tǒng)使用及維護(hù)合同
- 電力行業(yè)電力調(diào)度培訓(xùn)
- 生態(tài)安全與國(guó)家安全
- 全力以赴備戰(zhàn)期末-2024-2025學(xué)年上學(xué)期備戰(zhàn)期末考試主題班會(huì)課件
- 2024年保密協(xié)議書(政府機(jī)關(guān))3篇
- 《視頻拍攝與制作:短視頻?商品視頻?直播視頻(第2版)》-課程標(biāo)準(zhǔn)
- 研發(fā)部年終總結(jié)和規(guī)劃
- 石油開采技術(shù)服務(wù)支持合同
- 山東省煙臺(tái)市2024屆高三上學(xué)期期末考試英語試題 含解析
- 公司戰(zhàn)略與風(fēng)險(xiǎn)管理戰(zhàn)略實(shí)施
- 2024年-2025年《農(nóng)作物生產(chǎn)技術(shù)》綜合知識(shí)考試題庫及答案
- 廣東省廣州市白云區(qū)2022-2023學(xué)年八年級(jí)上學(xué)期物理期末試卷(含答案)
評(píng)論
0/150
提交評(píng)論