甘肅省張掖市名校2022年數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第1頁
甘肅省張掖市名校2022年數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第2頁
甘肅省張掖市名校2022年數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第3頁
甘肅省張掖市名校2022年數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第4頁
甘肅省張掖市名校2022年數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.若將拋物線y=x2向右平移2個單位,再向上平移3個單位,則所得拋物線的表達式為()A. B. C. D.2.在Rt△ABC中,AB=6,BC=8,則這個三角形的內(nèi)切圓的半徑是()A.5 B.2 C.5或2 D.2或-13.當溫度不變時,氣球內(nèi)氣體的氣壓P(單位:kPa)是氣體體積V(單位:m3)的函數(shù),下表記錄了一組實驗數(shù)據(jù):P與V的函數(shù)關系式可能是()V(單位:m3)11.522.53P(單位:kPa)96644838.432A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176 D.P=4.已知x1,x2是一元二次方程的兩根,則x1+x2的值是()A.0 B.2 C.-2 D.45.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象可能是()A. B. C. D.6.下列說法正確的是()A.為了了解長沙市中學生的睡眠情況,應該采用普查的方式B.某種彩票的中獎機會是1%,則買111張這種彩票一定會中獎C.若甲組數(shù)據(jù)的方差s甲2=1.1,乙組數(shù)據(jù)的方差s乙2=1.2,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定D.一組數(shù)據(jù)1,5,3,2,3,4,8的眾數(shù)和中位數(shù)都是37.反比例函數(shù)圖象的一支如圖所示,的面積為2,則該函數(shù)的解析式是()A. B. C. D.8.如果圓錐的底面半徑為3,母線長為6,那么它的側(cè)面積等于()A.9π B.18π C.24π D.36π9.對于兩個不相等的實數(shù),我們規(guī)定符號表示中的較大值,如:,按照這個規(guī)定,方程的解為()A.2 B.C.或 D.2或10.在Rt△ABC中,∠C=90°.若AC=2BC,則sinA的值是()A. B. C. D.2二、填空題(每小題3分,共24分)11.如圖是一個圓環(huán)形黃花梨木擺件的殘片,為求其外圓半徑,小林在外圓上任取一點A,然后過點A作AB與殘片的內(nèi)圓相切于點D,作CD⊥AB交外圓于點C,測得CD=15cm,AB=60cm,則這個擺件的外圓半徑是_____cm.12.如圖是一個圓錐的展開圖,如果扇形的圓心角等于90°,扇形的半徑為6cm,則圓錐底面圓的半徑是______cm.13.在一只不透明的口袋中放入只有顏色不同的白色球3個,黑色球5個,黃色球n個,攪勻后隨機從中摸取一個恰好是白色球的概率為,則放入的黃色球數(shù)n=_________.14.如圖,在△ABC中,AB=AC=1,點D、E在直線BC上運動,設BD=x,CE=y(tǒng).如果∠BAC=30°,∠DAE=105°,則y與x之間的函數(shù)關系式為________________.15.動手操作:在矩形紙片ABCD中,AB=3,AD=5.如圖所示,折疊紙片,使點A落在BC邊上的A’處,折痕為PQ,當點A’在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動,則點A’在BC邊上可移動的最大距離為.16.閱讀下列材料,我們知道,因此將的分子分母同時乘以“”,分母就變成了4,即,從而可以達到對根式化簡的目的,根據(jù)上述閱讀材料解決問題:若,則代數(shù)式m5+2m4﹣2017m3+2016的值是_____.17.在反比例函數(shù)y=﹣的圖象上有兩點(﹣,y1),(﹣1,y1),則y1_____y1.(填>或<)18.有三張正面分別寫有數(shù)字﹣1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后隨即抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,則點(a,b)在第二象限的概率為_____.三、解答題(共66分)19.(10分)如圖,已知正方形ABCD,點E為AB上的一點,EF⊥AB,交BD于點F.(1)如圖1,直按寫出的值;(2)將△EBF繞點B順時針旋轉(zhuǎn)到如圖2所示的位置,連接AE、DF,猜想DF與AE的數(shù)量關系,并證明你的結(jié)論;(3)如圖3,當BE=BA時,其他條件不變,△EBF繞點B順時針旋轉(zhuǎn),設旋轉(zhuǎn)角為α(0°<α<360°),當α為何值時,EA=ED?在圖3或備用圖中畫出圖形,并直接寫出此時α=.20.(6分)鄭萬高鐵開通后,極大地方便了沿線城市人民的出行.高鐵開通前,從地到地需乘普速列車繞行地,已知,車速為高鐵開通后,可從地乘高鐵以的速度直達地,其中在的北偏東方向,在的南偏東方向.甲、乙兩人分別乘高鐵與普速列車同時從出發(fā)到地,結(jié)果乙比甲晚到小時.試求兩地的距離.21.(6分)如圖,在中,,,,平分交于點,過點作交于點,點是線段上的動點,連結(jié)并延長分別交,于點、.(1)求的長.(2)若點是線段的中點,求的值.(3)請問當?shù)拈L滿足什么條件時,在線段上恰好只有一點,使得?22.(8分)解方程:x2﹣6x+8=1.23.(8分)同學張豐用一張長18cm、寬12cm矩形紙片折出一個菱形,他沿矩形的對角線AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四邊形AECF(如圖).(1)證明:四邊形AECF是菱形;(2)求菱形AECF的面積.24.(8分)如圖,在一筆直的海岸線上有A,B兩觀景臺,A在B的正東方向,BP=5(單位:km),有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(1)求A、B兩觀景臺之間的距離;(2)小船從點P處沿射線AP的方向進行沿途考察,求觀景臺B到射線AP的最短距離.(結(jié)果保留根號)25.(10分)已知菱形的兩條對角線長度之和為40厘米,面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.(1)請直接寫出S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.(2)當x取何值時,菱形的面積最大,最大面積是多少?26.(10分)已知:△ABC在平面直角坐標系內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是__________;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;四邊形AA2C2C的面積是__________平方單位.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:∵函數(shù)y=x2的圖象的頂點坐標為,將函數(shù)y=x2的圖象向右平移2個單位,再向上平移3個單位,∴其頂點也向右平移2個單位,再向上平移3個單位.根據(jù)根據(jù)坐標的平移變化的規(guī)律,左右平移只改變點的橫坐標,左減右加.上下平移只改變點的縱坐標,下減上加.∴平移后,新圖象的頂點坐標是.∴所得拋物線的表達式為.故選B.考點:二次函數(shù)圖象與平移變換.2、D【解析】分AC為斜邊和BC為斜邊兩種情況討論.根據(jù)切線定理得過切點的半徑垂直于三角形各邊,利用面積法列式求半徑長.【詳解】第一情況:當AC為斜邊時,如圖,設⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情況:當BC為斜邊時,如圖,設⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故選:D.【點睛】本題考查了三角形內(nèi)切圓半徑的求法及勾股定理,依據(jù)圓的切線性質(zhì)是解答此題的關鍵.等面積法是求高度等線段長的常用手段.3、D【解析】試題解析:觀察發(fā)現(xiàn):故P與V的函數(shù)關系式為故選D.點睛:觀察表格發(fā)現(xiàn)從而確定兩個變量之間的關系即可.4、B【解析】∵x1,x1是一元二次方程的兩根,∴x1+x1=1.故選B.5、C【解析】試題分析:∵二次函數(shù)圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經(jīng)過第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項圖象符合.故選C.考點:1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.6、D【分析】根據(jù)抽樣調(diào)查、概率、方差、中位數(shù)與眾數(shù)的概念判斷即可.【詳解】A、為了解長沙市中學生的睡眠情況,應該采用抽樣調(diào)查的方式,不符合題意;B、某種彩票的中獎機會是1%,則買111張這種彩票可能會中獎,不符合題意;C、若甲組數(shù)據(jù)的方差s甲2=1.1,乙組數(shù)據(jù)的方差s乙2=1.2,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定,不符合題意;D、一組數(shù)據(jù)1,5,3,2,3,4,8的眾數(shù)和中位數(shù)都是3,符合題意;故選:D.【點睛】本題考查統(tǒng)計的相關概念,關鍵在于熟記概念.7、D【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義,由△POM的面積為2,可知|k|=2,再結(jié)合圖象所在的象限,確定k的值,則函數(shù)的解析式即可求出.【詳解】解:△POM的面積為2,S=|k|=2,,又圖象在第四象限,k<0,k=-4,反比例函數(shù)的解析式為:.故選D.【點睛】本題考查了反比例函數(shù)的比例系數(shù)k與其圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即S=|k|.8、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】解:圓錐的側(cè)面積=×2π×3×6=18π.故選:B.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、D【分析】分兩種情況討論:①,②,根據(jù)題意得出方程求解即可.【詳解】有意義,則①當,即時,由題意得,去分母整理得,解得經(jīng)檢驗,是分式方程的解,符合題意;②當,即時,由題意得,去分母整理得,解得,,經(jīng)檢驗,,是分式方程的解,但,∴取綜上所述,方程的解為2或,故選:D.【點睛】本題考查了新型定義下的分式方程與解一元二次方程,理解題意,進行分類討論是解題的關鍵.10、C【分析】設BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函數(shù)在直角三角形中的定義,可算出sinA的值.【詳解】解:由AC=2BC,設BC=x,則AC=2x,

∵Rt△ABC中,∠C=90°,

∴根據(jù)勾股定理,得AB=.

因此,sinA=.

故選:C.【點睛】本題已知直角三角形的兩條直角邊的關系,求角A的正弦之值.著重考查了勾股定理、三角函數(shù)的定義等知識,屬于基礎題.二、填空題(每小題3分,共24分)11、37.1【分析】根據(jù)垂徑定理求得AD=30cm,然后根據(jù)勾股定理得出方程,解方程即可求得半徑.【詳解】如圖,設點O為外圓的圓心,連接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴設半徑為rcm,則OD=(r﹣11)cm,根據(jù)題意得:r2=(r﹣11)2+302,解得:r=37.1,∴這個擺件的外圓半徑長為37.1cm,故答案為37.1.【點睛】本題考查了垂徑定理的應用以及勾股定理的應用,作出輔助線構(gòu)建直角三角形是解本題的關鍵.12、【分析】把的扇形的弧長等于圓錐底面周長作為相等關系,列方程求解.【詳解】設此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得:r=cm,故答案為.【點睛】本題考查了圓錐側(cè)面展開扇形與底面圓之間的關系,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.13、1

【分析】根據(jù)口袋中裝有白球3個,黑球5個,黃球n個,故球的總個數(shù)為3+5+n,再根據(jù)黃球的概率公式列式解答即可.【詳解】∵口袋中裝有白球3個,黑球5個,黃球n個,∴球的總個數(shù)為3+5+n,∵從中隨機摸出一個球,摸到白色球的概率為,即,解得:n=1,故答案為:1.【點睛】本題主要考查概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、【解析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案為.15、2【解析】解:當點P與B重合時,BA′取最大值是3,當點Q與D重合時(如圖),由勾股定理得A′C=4,此時BA′取最小值為1.則點A′在BC邊上移動的最大距離為3-1=2.16、2016【分析】首先對m這個式子進行分母有理化,然后觀察要求值的代數(shù)式進行拆分代入運算即可.【詳解】∵===,∴m+1=,∴,∴,∴原式==2016.故答案為:2016.【點睛】本題考查了二次根式的分母有理化,代數(shù)式的求值,觀察代數(shù)式的特點拆分代入是解題的關鍵.17、>【分析】直接將(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【詳解】解:∵反比例函數(shù)y=﹣的圖象上有兩點(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案為:>.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.18、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果以及點(a,b)在第二象限的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖圖得:∵共有6種等可能的結(jié)果,點(a,b)在第二象限的有2種情況,∴點(a,b)在第二象限的概率為:.故答案為:.【點睛】本題考查的是利用公式計算某個事件發(fā)生的概率,注意找全所有可能出現(xiàn)的結(jié)果數(shù)作分母.在判斷某個事件A可能出現(xiàn)的結(jié)果數(shù)時,要注意審查關于事件A的說法,避免多數(shù)或少數(shù).三、解答題(共66分)19、(1);(2)DF=AE,理由見解析;(3)作圖見解析,30°或150°【分析】(1)直接利用等腰直角三角形的性質(zhì)計算即可得出結(jié)論;(2)先判斷出,進而得出△ABE∽△DBF,即可得出結(jié)論;(3)先判斷出點E在AD的中垂線上,再判斷出△BCE是等邊三角形,求出∠CBE=60°,再分兩種情況計算即可得出結(jié)論.【詳解】(1)∵BD是正方形ABCD的對角線,∴∠ABD=45,BD=AB,∵EF⊥AB,∴∠BEF=90,∴∠BFE=∠ABD=45,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴,故答案為:;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∠BFE=∠ABD=45,∴,由旋轉(zhuǎn)知,∠ABE=∠DBF,∴△ABE∽△DBF,∴,∴DF=AE;(3)如圖3,連接DE,CE,∵EA=ED,∴點E在AD的中垂線上,∴AE=DE,BE=CE,∵四邊形ABCD是正方形,∴∠BAD=∠ABC=90,AB=BC,∴BE=CE=BC,∴△BCE是等邊三角形,∴∠CBE=60,∴∠ABE=∠ABC-∠CBE=90-60=30,即:α=30,如圖4,同理,△BCE是等邊三角形,∴∠ABE=∠ABC+∠CBE=90+60=150,即:α=150,故答案為:30或150.【點睛】本題屬于相似形的綜合題,主要考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理的綜合運用,解決問題的關鍵是利用相似比表示線段之間的關系.20、兩地的距離為【分析】過點作交的延長線于點,利用解直角三角形求出AB、AD、BD的長度,設從到的時間為小時,在Rt△ACD中,利用勾股定理列出方程,求出t的值,然后得到AC的長度.【詳解】解:由題意可知,.過點作交的延長線于點,.設從到的時間為小時,則從到再到的時間為小時,,.易得,.在中,,,即,解得:(舍去),,.【點睛】本題考查了解直角三角形的應用,方位角問題,利用勾股定理解直角三角形,解題的關鍵是熟練運用解直角三角形和勾股定理求出各邊長度,從而列出方程解題.21、(1);(2);(3)當或時,滿足條件的點只有一個.【解析】(1)由角平分線定義得,在中,根據(jù)銳角三角函數(shù)正切定義即可求得長.(2)由題意易求得,,由全等三角形判定得,根據(jù)全等三角形性質(zhì)得,根據(jù)相似三角形判定得,由相似三角形性質(zhì)得,將代入即可求得答案.(3)由圓周角定理可得是頂角為120°的等腰三角形,再分情況討論:①當與相切時,結(jié)合題意畫出圖形,過點作,并延長與交于點,連結(jié),,設半徑為,由相似三角形的判定和性質(zhì)即可求得長;②當經(jīng)過點時,結(jié)合題意畫出圖形,過點作,設半徑為,在中,根據(jù)勾股定理求得,再由相似三角形的判定和性質(zhì)即可求得長;③當經(jīng)過點時,結(jié)合題意畫出圖形,此時點與點重合,且恰好在點處,由此可得長.【詳解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,過,,作外接圓,圓心為,∴是頂角為120°的等腰三角形.①當與相切時,如圖1,過點作,并延長與交于點,連結(jié),設的半徑則,,解得.∴,.易知,可得,則∴.②當經(jīng)過點時,如圖2,過點作,垂足為.設的半徑,則.在中,,解得,∴易知,可得③當經(jīng)過點時,如圖3,此時點與點重合,且恰好在點處,可得.綜上所述,當或時,滿足條件的點只有一個.【點睛】本題屬于相似形綜合題,考查了相似三角形的判定和性質(zhì),解直角三角形,圓周角定理等知識,解題的關鍵是學會利用參數(shù)構(gòu)建方程解決問題,學會利用特殊位置解決數(shù)學問題,屬于中考壓軸題.22、x1=2x2=2.【分析】應用因式分解法解答即可.【詳解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【點睛】本題考查了解一元二次方程﹣因式分解法,解答關鍵是根據(jù)方程特點進行因式分解.23、(1)詳見解析;(2)1.【分析】(1)先證明四邊形AECF是平行四邊形,再證明AF=CE即可.(2)在RT△ABE中利用勾股定理求出BE、AE,再根據(jù)S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC求出面積即可.【詳解】(1)證明:∵四邊形ABCD是菱形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四邊形AECF是平行四邊形,∵∠FAC=∠FCA,∴AF=CF,∴四邊形AECF是菱形.(2)解:∵四邊形AECF是菱形,∴AE=EC=CF=AF,設菱形的邊長為a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=1cm2.【點睛】本題考查菱形的判定和性質(zhì)、勾股定理等知識,熟練掌握菱形的判定方法是解決問題的關鍵,學會轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為方程解決屬于中考??碱}型.24、(1)A、B兩觀景臺之間的距離為=(5+5)km;(2)觀測站B到射線AP的最短距離為()km.【分析】(1)過點P作PD⊥AB于點D,先解Rt△PBD,得到BD和PD的長,再解Rt△PAD,得到AD和AP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論