廣東省廣州市嶺南中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
廣東省廣州市嶺南中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
廣東省廣州市嶺南中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
廣東省廣州市嶺南中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
廣東省廣州市嶺南中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廣州市嶺南中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.82.定義域為的函數(shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.3.對任意實數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)4.設(shè),則有()A. B.C. D.5.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.136.設(shè)橢圓C:的左、右焦點分別為、,P是C上的點,⊥,∠=,則C的離心率為A. B.C. D.7.甲、乙、丙、丁四位同學(xué)一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據(jù)以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績8.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.9.已知函數(shù),則的值為()A. B.0C.1 D.10.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.11.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點,其歐拉線方程為,則頂點C的坐標是()A.() B.()C.() D.()12.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種二、填空題:本題共4小題,每小題5分,共20分。13.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準時發(fā)車,則他等車時間不超過5分鐘的概率為______14.若命題“,使得”為假命題,則實數(shù)a的取值范圍是___________15.小明同學(xué)發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.16.已知點在圓C:()內(nèi),過點M的直線被圓C截得的弦長最小值為8,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求的單調(diào)區(qū)間;(2)當時,證明:存在最大值,且恒成立.18.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標原點);(2)設(shè)F為拋物線C的焦點,直線為拋物線C的準線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值19.(12分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標準方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.20.(12分)已知函數(shù)在處的切線與軸平行(1)求的值;(2)判斷在上零點的個數(shù),并說明理由21.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和22.(10分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,是數(shù)列的前項和,求使成立的最大的正整數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)橢圓的離心率,即可求出,進而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎(chǔ)題.2、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因為f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因為f(1)=1,所以g(1)=2f(1)-1-1=0.所以當x<1時,g(x)<0,即2f(x)<x+1.故選B.【點睛】本題主要考察導(dǎo)數(shù)的運算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題3、A【解析】判斷直線恒過定點,可知定點在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.4、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.5、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點時截距最小,求出點A坐標,代入目標式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點時截距最小,由,得,則.故選:C.6、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.7、A【解析】分析可知乙、丙的成績中必有位優(yōu)秀、位良好,結(jié)合題意進行推導(dǎo),可得出結(jié)論.【詳解】由于個人中的成績中有位優(yōu)秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優(yōu)秀、位良好,甲、丁的成績中必有位優(yōu)秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.8、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.9、B【解析】求導(dǎo),代入,求出,進而求出.【詳解】,則,即,解得:,故,所以故選:B10、D【解析】根據(jù)點到直線的距離與點到點之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D11、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標,聯(lián)立方程組,即可求得結(jié)果.【詳解】因為,故的斜率,又的中點坐標為,故的垂直平分線的方程為,即,故△的外心坐標即為與的交點,即,不妨設(shè)點,則,即;又△的重心的坐標為,其滿足,即,也即,將其代入,可得,,解得或,對應(yīng)或,即或,因為與點重合,故舍去.故點的坐標為.故選:A.12、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計算作答.【詳解】計算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計數(shù)原理得(種),所以不同的涂法有12種.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.14、(-1,0]【解析】將題意的命題轉(zhuǎn)化條件為“,”為真命題,結(jié)合一元二次不等式恒成立即可得解.【詳解】因為命題“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當時,不等式為,符合題意;當時,則需滿足,解得;綜上,實數(shù)的取值范圍為.故答案為:.15、【解析】建立直角坐標系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標系,設(shè)雙曲線的標準方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:16、【解析】根據(jù)點與圓的位置關(guān)系,可求得r的取值范圍,再利用過圓內(nèi)一點最短的弦,結(jié)合弦長公式可得到關(guān)于r的方程,求解即可.【詳解】由點在圓C:內(nèi),且所以,又,解得過圓內(nèi)一點最短的弦,應(yīng)垂直于該定點與圓心的連線,即圓心到直線的距離為又,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當時,定義域R,求出,從而得出單調(diào)區(qū)間,由當時,,當時,,以及極值點與2的大小關(guān)系可得出當時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當時,定義域R因為,當時,,當時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當時,,且,由所以當時,函數(shù)有最大值.所以,因為,所以,設(shè),則所以化為由,則,則,所以所以18、(1)(2)證明見解析,定值為【解析】(1)設(shè)出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標,通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設(shè)直線的方程為,設(shè),,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點坐標為,準線,通徑所在直線,在拋物線上,且,所以過點的拋物線的切線的斜率存在且不為零,設(shè)過點的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.19、(1)(2)【解析】(1)代入點坐標,結(jié)合離心率,以及即得解;(2)設(shè)直線方程,與橢圓聯(lián)立,轉(zhuǎn)化為,結(jié)合韋達定理和判別式,分析即得解【小問1詳解】由題意可知:,解得:橢圓的標準方程為:【小問2詳解】①當直線斜率不存在,方程為,則,.②當直線斜率存在時,設(shè)直線方程為,聯(lián)立得:.由得:.設(shè),,則,,又,,,則,,所以,所以,解得:,又,綜上所述:的取值范圍為.20、(1)0(2)f(x)在(0,π)上有且只有一個零點,理由見解析【解析】(1)利用導(dǎo)數(shù)的幾何意義求解;(2)由,可得,令,,,,利用導(dǎo)數(shù)法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當時,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調(diào)遞增,又因為g(0)=0,所以g(x)在上無零點;②當時,令,所以h′(x)=2cosxex<0,即h(x)在上單調(diào)遞減,又因為,h(π)=-eπ-1<0,所以存在,,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,因為,g(π)=-π<0,所以g(x)在上且只有一個零點;綜上所述:f(x)在(0,π)上有且只有一個零點21、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論