版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
LLMAICybersecurity&GovernanceChecklist
FromtheOWASPTop10forLLMApplicationsTeam
Version:1.0
Published:February19,2024
RevisionHistory
Revision
Date
Author(s)
Description
0.1
2023-11-01
SandyDunn
initialdraft
0.5
2023-12-06
SD,Team
publicdraft
0.9
2023-02-15
SD,Team
pre-releasedraft
1.0
2024-02-19
SD,Team
publicreleasev1.0
Theinformationprovidedinthisdocumentdoesnot,andisnotintendedto,constitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.
Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.
1
Overview
5
1.1
ResponsibleandTrustworthyArti?cialIntelligence
6
1.2
WhoisThisFor?
7
1.3
WhyaChecklist?
7
1.4
NotComprehensive
7
1.5
LargeLanguageModelChallenges
7
1.6
LLMThreatCategories
8
1.7
Arti?cialIntelligenceSecurityandPrivacyTraining
9
1.8
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls9
1.9
FundamentalSecurityPrinciples
9
1.10
Risk
10
1.11
VulnerabilityandMitigationTaxonomy
10
2
DeterminingLLMStrategy
11
2.1
DeploymentStrategy
13
3
Checklist
14
3.1
AdversarialRisk
14
3.2
ThreatModeling
14
3.3
AIAssetInventory
14
3.4
AISecurityandPrivacyTraining
15
3.5
EstablishBusinessCases
15
3.6
Governance
16
3.7
Legal
17
3.8
Regulatory
18
3.9
UsingorImplementingLargeLanguageModelSolutions
19
3.10
Testing,Evaluation,Veri?cation,andValidation(TEVV)
19
3.11
ModelCardsandRiskCards
20
3.12
RAG:LargeLanguageModelOptimization
21
3.13
AIRedTeaming
21
4
Resources
22
A
Team
32
Overview
Everyinternetuserandcompanyshouldpreparefortheupcomingwaveofpowerfulgenerativearti?cialintelligence(GenAI)applications.GenAIhasenormouspromiseforinnovation,ef?ciency,andcommercialsuccessacrossavarietyofindustries.Still,likeanypowerfulearlystagetechnology,itbringsitsownsetofobviousandunexpectedchallenges.
Arti?cialintelligencehasadvancedgreatlyoverthelast50years,inconspicuouslysupportingavarietyofcorporateprocessesuntilChatGPT’spublicappearancedrovethedevelopmentanduseofLargeLanguageModels(LLMs)amongbothindividualsandenterprises.Initially,thesetechnologieswerelimitedtoacademicstudyortheexecutionofcertain,butvital,activitieswithincorporations,visibleonlytoaselectfew.However,recentadvancesindataavailability,computerpower,GenAIcapabilities,andthereleaseoftoolssuchasLlama2,ElevenLabs,andMidjourneyhaveraisedAIfromanichetogeneralwidespreadacceptance.TheseimprovementshavenotonlymadeGenAItechnologiesmoreaccessible,buttheyhavealsohighlightedthecriticalneedforenterprisestodevelopsolidstrategiesforintegratingandexploitingAIintheiroperations,representingahugestepforwardinhowweusetechnology.
?Arti?cialintelligence(AI)isabroadtermthatencompassesall?eldsofcomputersciencethatenablemachinestoaccomplishtasksthatwouldnormallyrequirehumanintelligence.MachinelearningandgenerativeAIaretwosubcategoriesofAI.
?MachinelearningisasubsetofAIthatfocusesoncreatingalgorithmsthatcanlearnfromdata.Machinelearningalgorithmsaretrainedonasetofdata,andthentheycanusethatdatatomakepredictionsordecisionsaboutnewdata.
?GenerativeAIisatypeofmachinelearningthatfocusesoncreatingnewdata.
?Alargelanguagemodel(LLM)isatypeofAImodelthatprocessesandgenerateshuman-liketext.Inthecontextofarti?cialintelligencea"model"referstoasystemthatistrainedtomakepredictionsbasedoninputdata.LLMsarespeci?callytrainedonlargedatasetsofnaturallanguageandthenamelargelanguagemodels.
OrganizationsareenteringunchartedterritoryinsecuringandoverseeingGenAIsolutions.TherapidadvancementofGenAIalsoopensdoorsforadversariestoenhancetheirattackstrategies,introducingadualchallengeofdefenseandthreatescalation.
Businessesusearti?cialintelligenceinmanyareas,includingHRforrecruiting,emailspamscreening,SIEMforbehavioralanalytics,andmanageddetectionandresponseapplications.However,thisdocument’sprimaryfocusisonLargeLanguageModelapplicationsandtheirfunctionincreatinggeneratedcontent.
ResponsibleandTrustworthyArti?cialIntelligence
Aschallengesandbene?tsofArti?cialIntelligenceemerge-andregulationsandlawsarepassed-theprinciplesandpillarsofresponsibleandtrustworthyAIusageareevolvingfromidealisticobjectsandconcernstoestablishedstandards.The
OWASPAIExchangeWorkingGroup
ismonitoringthesechangesandaddressingthebroaderandmorechallengingconsiderationsforallaspectsofarti?cialintelligence.
Figure1.1:Imagedepictingthepillarsoftrustworthyarti?cialintelligence
WhoisThisFor?
TheOWASPTop10forLLMApplicationsCybersecurityandGovernanceChecklistisforleadersacrossexecutive,tech,cybersecurity,privacy,compliance,andlegalareas,DevSecOps,MLSecOps,
andCybersecurityteamsanddefenders.Itisintendedforpeoplewhoarestrivingtostayaheadin
thefast-movingAIworld,aimingnotjusttoleverageAIforcorporatesuccessbutalsotoprotectagainsttherisksofhastyorinsecureAIimplementations.Theseleadersandteamsmustcreatetacticstograbopportunities,combatchallenges,andmitigaterisks.
Thischecklistisintendedtohelpthesetechnologyandbusinessleadersquicklyunderstandtherisksandbene?tsofusingLLM,allowingthemtofocusondevelopingacomprehensivelistofcriticalareasandtasksneededtodefendandprotecttheorganizationastheydevelopaLargeLanguageModelstrategy.
ItisthehopeoftheOWASPTop10fortheLLMApplicationsteamthatthislistwillhelporganizationsimprovetheirexistingdefensivetechniquesanddeveloptechniquestoaddressthenewthreatsthatcomefromusingthisexcitingtechnology.
WhyaChecklist?
Checklistsusedtoformulatestrategiesimproveaccuracy,de?neobjectives,preserveuniformity,andpromotefocuseddeliberatework,reducingoversightsandmisseddetails.Followingachecklistnotonlyincreasestrustinasafeadoptionjourney,butalsoencouragesfutureorganizationsinnovationsbyprovidingasimpleandeffectivestrategyforcontinuousimprovement.
NotComprehensive
AlthoughthisdocumentintendstosupportorganizationsindevelopinganinitialLLMstrategyinarapidlychangingtechnical,legal,andregulatoryenvironment,itisnotexhaustiveanddoesnotcovereveryusecaseorobligation.WhileusingthisdocumentisOrganizationsshouldextendassessmentsandpracticesbeyondthescopeoftheprovidedchecklistasrequiredfortheirusecaseorjurisdiction.
LargeLanguageModelChallenges
LargeLanguagemodelsfaceseveralseriousanduniqueissues.OneofthemostimportantisthatwhileworkingwithLLMs,thecontrolanddataplanescannotbestrictlyisolatedorseparable.Anothersigni?cantchallengeisthatLLMsarenondeterministicbydesign,yieldingadifferentoutcomewhenpromptedorrequested.LLMsemploysemanticsearchratherthankeywordsearch.Thekeydistinctionbetweenthetwoisthatthemodel’salgorithmprioritizesthetermsinitsresponse.Thisisasigni?cantdeparturefromhowconsumershavepreviouslyusedtechnology,andithasanimpactontheconsistencyandreliabilityofthe?ndings.Hallucinations,emergingfromthegapsandtraining?awsinthedatathemodelistrainedon,aretheresultofthismethod.
Therearemethodstoimprovereliabilityandreducetheattacksurfaceforjailbreaking,modeltricking,andhallucinations,butthereisatrade-offbetweenrestrictionsandutilityinbothcostandfunctionality.
LLMuseandLLMapplicationsincreaseanorganization’sattacksurface.Somerisksassociated
withLLMsareunique,butmanyarefamiliarissues,suchastheknownsoftwarebillofmaterials(SBoM),supplychain,datalossprotection(DLP),andauthorizedaccess.TherearealsoincreasedrisksnotdirectlyrelatedtoGenAI,butGenAIincreasestheef?ciency,capability,andeffectivenessofattackerswhoattackandthreatenorganizations.
AdversariesareincreasinglyharnessingLLMandGenerativeAItoolstore?neandexpeditetraditional
methodsofattackingorganizations,individuals,andgovernmentsystems.LLMfacilitatestheirabilitytoenhancetechniquesallowingthemtoeffortlesslycraftnewmalware,potentiallyembeddedwithnovelzero-dayvulnerabilitiesordesignedtoevadedetection.Theycanalsogeneratesophisticated,unique,ortailoredphishingschemes.Thecreationofconvincingdeepfakes,whethervideooraudio,furtherpromotestheirsocialengineeringploys.Additionally,thesetoolsenablethemtoexecuteintrusionsanddevelopinnovativehackingcapabilities.Inthefuture,more“tailored”andcompounduseofAItechnologybycriminalactorswilldemandspeci?cresponsesanddedicatedsolutionsfor
anorganization’sappropriatedefenseandresiliencecapabilities.
OrganizationsalsofacethethreatofNOTutilizingthecapabilitiesofLLMssuchasacompetitivedisadvantage,marketperceptionbycustomersandpartnersofbeingoutdated,inabilitytoscalepersonalizedcommunications,innovationstagnation,operationalinef?ciencies,thehigherriskofhumanerrorinprocesses,andinef?cientallocationofhumanresources.
UnderstandingthedifferentkindsofthreatsandintegratingthemwiththebusinessstrategywillhelpweighboththeprosandconsofusingLargeLanguageModels(LLMs)againstnotusingthem,makingsuretheyaccelerateratherthanhinderthebusiness’smeetingbusinessobjectives.
LLMThreatCategories
Figure1.2:ImagedepictingthetypesofAIthreats
Arti?cialIntelligenceSecurityandPrivacyTraining
Employeesthroughoutorganizationsbene?tfromtrainingtounderstandarti?cialintelligence,generativearti?cialintelligence,andthefuturepotentialconsequencesofbuilding,buying,orutilizingLLMs.Trainingforpermissibleuseandsecurityawarenessshouldtargetallemployeesaswellasbemorespecializedforcertainpositionssuchashumanresources,legal,developers,datateams,andsecurityteams.
Fairusepoliciesandhealthyinteractionarekeyaspectsthat,ifincorporatedfromtheverystart,willbeacornerstonetothesuccessoffutureAIcybersecurityawarenesscampaigns.Thiswillnecessarilyprovideuserswithknowledgeofthebasicrulesforinteractionaswellastheabilitytoseparategoodbehaviorfrombadorunethicalbehavior.
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls
WhileAIandgeneratedAIaddanewdimensiontocybersecurity,resilience,privacy,andmeetinglegalandregulatoryrequirements,thebestpracticesthathavebeenaroundforalongtimearestillthebestwaytoidentifyissues,?ndvulnerabilities,?xthem,andmitigatepotentialsecurityissues.
?Con?rmthemanagementofarti?cialintelligencesystemsisintegratedwithexistingorganizationalpractices.
?Con?rmAIMLsystemsfollowexistingprivacy,governance,andsecuritypractices,withAIspeci?cprivacy,governance,andsecuritypracticesimplementedwhenrequired.
FundamentalSecurityPrinciples
LLMcapabilitiesintroduceadifferenttypeofattackandattacksurface.LLMsarevulnerabletocomplexbusinesslogicbugs,suchaspromptinjection,insecureplugindesign,andremotecodeexecution.Existingbestpracticesarethebestwaytosolvetheseissues.Aninternalproductsecurityteamthatunderstandssecuresoftwarereview,architecture,datagovernance,andthird-partyassessmentsThecybersecurityteamshouldalsocheckhowstrongthecurrentcontrolsareto?ndproblemsthatcouldbemadeworsebyLLM,suchasvoicecloning,impersonation,orbypassingcaptchas.Givenrecentadvancementsinmachinelearning,NLP(NaturalLanguageProcessing),NLU(NaturalLanguageUnderstanding),DeepLearning,andmorerecently,LLMs(LargeLanguageModels)andGenerativeAI,itisrecommendedtoincludeprofessionalspro?cientintheseareasalongsidecybersecurityanddevopsteams.Theirexpertisewillnotonlyaidinadoptingthesetechnologiesbutalsoindevelopinginnovativeanalysesandresponsestoemergingchallenges.
Risk
ReferencetoriskusestheISO31000de?nition:Risk="effectofuncertaintyonobjectives."LLMrisksincludedinthechecklistincludesatargetedlistofLLMrisksthataddressadversarial,safety,legal,regulatory,reputation,?nancial,andcompetitiverisks.
VulnerabilityandMitigationTaxonomy
Currentsystemsforclassifyingvulnerabilitiesandsharingthreatinformation,likeOVAL,STIX,CVE,andCWE,arestilldevelopingtheabilitytomonitorandalertdefendersaboutvulnerabilitiesandthreatsspeci?ctoLargeLanguageModels(LLMs)andPredictiveModels.Itisexpectedthatorganizationswillleanontheseestablishedandrecognizedstandards,suchasCVEforvulnerabilityclassi?cationandSTIXfortheexchangeofcyberthreatintelligence(CTI),whenvulnerabilitiesorthreatstoAI/MLsystemsandtheirsupplychainsareidenti?ed.
DeterminingLLMStrategy
TherapidexpansionofLargeLanguageModel(LLM)applicationshasheightenedtheattentionandexaminationofallAI/MLsystemsusedinbusinessoperations,encompassingbothGenerativeAIandlong-establishedPredictiveAI/MLsystems.Thisincreasedfocusexposespotentialrisks,suchasattackerstargetingsystemsthatwerepreviouslyoverlookedandgovernanceorlegalchallengesthatmayhavebeendisregardedintermsoflegal,privacy,liability,orwarrantyissues.ForanyorganizationleveragingAI/MLsystemsinitsoperations,it’scriticaltoassessandestablishcomprehensivepolicies,governance,securityprotocols,privacymeasures,andaccountabilitystandardstoensurethesetechnologiesalignwithbusinessprocessessecurelyandethically.
Attackers,oradversaries,providethemostimmediateandharmfulthreattoenterprises,people,andgovernmentagencies.Theirgoals,whichrangefrom?nancialgaintoespionage,pushthemtostealcriticalinformation,disruptoperations,anddamagecon?dence.Furthermore,theirabilitytoharnessnewtechnologiessuchasAIandmachinelearningincreasesthespeedandsophisticationofattacks,makingitdif?cultfordefensestostayaheadofattacks.
Themostpressingnon-adversaryLLMthreatformanyorganizationsstemfrom"ShadowAI":
employeesusingunapprovedonlineAItools,unsafebrowserplugins,andthird-partyapplicationsthatintroduceLLMfeaturesviaupdatesorupgrades,circumventingstandardsoftwareapprovalprocesses.
Figure2.1:Imageofoptionsfordeploymentstrategy
DeploymentStrategy
Thescopesrangefromleveragingpublicconsumerapplicationstotrainingproprietarymodelsonprivatedata.Factorslikeusecasesensitivity,capabilitiesneeded,andresourcesavailablehelpdeterminetherightbalanceofconveniencevs.control.However,understandingthese?vemodeltypesprovidesaframeworkforevaluatingoptions.
Figure2.2:Imageofoptionsfordeploymenttypes
Checklist
AdversarialRisk
AdversarialRiskincludescompetitorsandattackers.
□Scrutinizehowcompetitorsareinvestinginarti?cialintelligence.AlthoughtherearerisksinAIadoption,therearealsobusinessbene?tsthatmayimpactfuturemarketpositions.
□Investigatetheimpactofcurrentcontrols,suchaspasswordresets,whichusevoicerecognitionwhichmaynolongerprovidetheappropriatedefensivesecurityfromnewGenAIenhancedattacks.
□UpdatetheIncidentResponsePlanandplaybooksforGenAIenhancedattacksandAIMLspeci?cincidents.
ThreatModeling
Threatmodelingishighlyrecommendedtoidentifythreatsandexamineprocessesandsecuritydefenses.Threatmodelingisasetofsystematic,repeatableprocessesthatenablemakingreasonablesecuritydecisionsforapplications,software,andsystems.ThreatmodelingforGenAIacceleratedattacksandbeforedeployingLLMsisthemostcosteffectivewaytoIdentifyandmitigaterisks,protectdata,protectprivacy,andensureasecure,compliantintegrationwithinthebusiness.
□Howwillattackersaccelerateexploitattacksagainsttheorganization,employees,executives,orusers?Organizationsshouldanticipate"hyper-personalized"attacksatscaleusingGenerativeAI.LLM-assistedSpearPhishingattacksarenowexponentiallymoreeffective,targeted,andweaponizedforanattack.
□HowcouldGenAIbeusedforattacksonthebusiness’scustomersorclientsthroughspoo?ngorGenAIgeneratedcontent?
□CanthebusinessdetectandneutralizeharmfulormaliciousinputsorqueriestoLLMsolutions?
□CanthebusinesssafeguardconnectionswithexistingsystemsanddatabaseswithsecureintegrationsatallLLMtrustboundaries?
□Doesthebusinesshaveinsiderthreatmitigationtopreventmisusebyauthorizedusers?
□CanthebusinesspreventunauthorizedaccesstoproprietarymodelsordatatoprotectIntellectualProperty?
□Canthebusinesspreventthegenerationofharmfulorinappropriatecontentwithautomatedcontent?ltering?
AIAssetInventory
AnAIassetinventoryshouldapplytobothinternallydevelopedandexternalorthird-partysolutions.
□CatalogexistingAIservices,tools,andowners.Designateataginassetmanagementforspeci?cinventory.
□IncludeAIcomponentsintheSoftwareBillofMaterial(SBOM),acomprehensivelistofallthesoftwarecomponents,dependencies,andmetadataassociatedwithapplications.
□CatalogAIdatasourcesandthesensitivityofthedata(protected,con?dential,public)
□EstablishifpentestingorredteamingofdeployedAIsolutionsisrequiredtodeterminethecurrentattacksurfacerisk.
□CreateanAIsolutiononboardingprocess.
□EnsureskilledITadminstaffisavailableeitherinternallyorexternally,followingSBoMrequirements.
AISecurityandPrivacyTraining
□ActivelyengagewithemployeestounderstandandaddressconcernswithplannedLLMinitiatives.
□Establishacultureofopen,andtransparentcommunicationontheorganization’suseofpredictiveorgenerativeAIwithintheorganizationprocess,systems,employeemanagementandsupport,andcustomerengagementsandhowitsuseisgoverned,managed,andrisksaddressed.
□Trainallusersonethics,responsibility,andlegalissuessuchaswarranty,license,andcopyright.
□UpdatesecurityawarenesstrainingtoincludeGenAIrelatedthreats.Voicecloningandimage
cloning,aswellasinanticipationofincreasedspearphishingattacks
□AnyadoptedGenAIsolutionsshouldincludetrainingforbothDevOpsandcybersecurityforthedeploymentpipelinetoensureAIsafetyandsecurityassurances.
EstablishBusinessCases
SolidbusinesscasesareessentialtodeterminingthebusinessvalueofanyproposedAIsolution,balancingriskandbene?ts,andevaluatingandtestingreturnoninvestment.Thereareanenormousnumberofpotentialusecases;afewexamplesareprovided.
□Enhancecustomerexperience
□Betteroperationalef?ciency
□Betterknowledgemanagement
□Enhancedinnovation
□MarketResearchandCompetitorAnalysis
□Documentcreation,translation,summarization,andanalysis
Governance
CorporategovernanceinLLMisneededtoprovideorganizationswithtransparencyandaccountability.IdentifyingAIplatformorprocessownerswhoarepotentiallyfamiliarwiththetechnologyorthe
selectedusecasesforthebusinessisnotonlyadvisedbutalsonecessarytoensureadequate
reactionspeedthatpreventscollateraldamagestowellestablishedenterprisedigitalprocesses.
□Establishtheorganization’sAIRACIchart(whoisresponsible,whoisaccountable,whoshouldbeconsulted,andwhoshouldbeinformed)
□DocumentandassignAIrisk,riskassessments,andgovernanceresponsibilitywithintheorganization.
□Establishdatamanagementpolicies,includingtechnicalenforcement,regardingdataclassi?cationandusagelimitations.Modelsshouldonlyleveragedataclassi?edfortheminimumaccesslevelofanyuserofthesystem.Forexample,updatethedataprotectionpolicytoemphasizenottoinputprotectedorcon?dentialdataintononbusiness-managedtools.
□CreateanAIPolicysupportedbyestablishedpolicy(e.g.,standardofgoodconduct,dataprotection,softwareuse)
□PublishanacceptableusematrixforvariousgenerativeAItoolsforemployeestouse.
□DocumentthesourcesandmanagementofanydatathattheorganizationusesfromthegenerativeLLMmodels.
Legal
ManyofthelegalimplicationsofAIareunde?nedandpotentiallyverycostly.AnIT,security,andlegalpartnershipiscriticaltoidentifyinggapsandaddressingobscuredecisions.
□Con?rmproductwarrantiesareclearintheproductdevelopmentstreamtoassignwhoisresponsibleforproductwarrantieswithAI.
□ReviewandupdateexistingtermsandconditionsforanyGenAIconsiderations.
□ReviewAIEULAagreements.End-userlicenseagreementsforGenAIplatformsareverydifferentinhowtheyhandleuserprompts,outputrightsandownership,dataprivacy,compliance,liability,privacy,andlimitsonhowoutputcanbeused.
□OrganizationsEULAforcustomers,Modifyend-useragreementstopreventtheorganizationfromincurringliabilitiesrelatedtoplagiarism,biaspropagation,orintellectualpropertyinfringementthroughAI-generatedcontent.
□ReviewexistingAI-assistedtoolsusedforcodedevelopment.Achatbot’sabilitytowritecodecanthreatenacompany’sownershiprightstoitsproductifachatbotisusedtogeneratecodefortheproduct.Forexample,itcouldcallintoquestionthestatusandprotectionofthegeneratedcontentandwhoholdstherighttousethegeneratedcontent.
□Reviewanyriskstointellectualproperty.Intellectualpropertygeneratedbyachatbotcouldbeinjeopardyifimproperlyobtaineddatawasusedduringthegenerativeprocess,whichissubjecttocopyright,trademark,orpatentprotection.IfAIproductsuseinfringingmaterial,itcreatesariskfortheoutputsoftheAI,whichmayresultinintellectualpropertyinfringement.
□Reviewanycontractswithindemni?cationprovisions.Indemni?cationclausestrytoputtheresponsibilityforaneventthatleadstoliabilityonthepersonwhowasmoreatfaultforitorwhohadthebestchanceofstoppingit.EstablishguardrailstodeterminewhethertheprovideroftheAIoritsusercausedtheevent,givingrisetoliability.
□ReviewliabilityforpotentialinjuryandpropertydamagecausedbyAIsystems.
□Reviewinsurancecoverage.Traditional(D&O)liabilityandcommercialgeneralliabilityinsurancepoliciesarelikelyinsuf?cienttofullyprotectAIuse.
□Identifyanycopyrightissues.Humanauthorshipisrequiredforcopyright.Anorganizationmayalsobeliableforplagiarism,propagationofbias,orintellectualpropertyinfringementifLLMtoolsaremisused.
□EnsureagreementsareinplaceforcontractorsandappropriateuseofAIforanydevelopmentorprovidedservices.
□RestrictorprohibittheuseofgenerativeAItoolsforemployeesorcontractorswhereenforceablerightsmaybeanissueorwherethereareIPinfringementconcerns.
□AssessandAIsolutionsusedforemployeemanagementorhiringcouldresultindisparatetreatmentclaimsordisparateimpactclaims.
□MakesuretheAIsolutionsdonotcollectorsharesensitiveinformationwithoutproperconsentorauthorization.
Regulatory
TheEUAIActisanticipatedtobethe?rstcomprehensiveAIlawbutwillapplyin2025attheearliest.TheEU?GeneralDataProtectionRegulation(GDPR)doesnotspeci?callyaddressAIbutincludesrulesfordatacollection,datasecurity,fairnessandtransparency,accuracyandreliability,andaccountability,whichcanimpactGenAIuse.IntheUnitedStates,AIregulationisincludedwithinbroaderconsumerprivacylaws.TenUSstateshavepassedlawsorhavelawsthatwillgointoeffectbytheendof2023.
FederalorganizationssuchastheUSEqualEmploymentOpportunityCommission(EEOC),theConsumerFinancialProtectionBureau(CFPB),theFederalTradeCommission(FTC),andtheUSDepartmentofJustice?CivilRightsDivision(DOJ)arecloselymonitoringhiringfairness.
□DetermineCountry,State,orotherGovernmentspeci?cAIcompliancerequirements.
□Determinecompliancerequirementsforrestrictingelectronicmonitoringofemployeesandemployment-relatedautomateddecisionsystems(Vermont,California,Maryland,NewYork,NewJersey)
□DeterminecompliancerequirementsforconsentforfacialrecognitionandtheAIvideoanalysisrequired(Illinois,Maryland,Washington,Vermont)
□ReviewanyAItoolsinuseorbeingconsideredforemployeehiringormanagement.
□Con?rmthevendor?compliancewithapplicableAIlawsandbestpractices.
□AskanddocumentanyproductsusingAIduringthehiringprocess.Askhowthemodelwastrained,andhowitismonitored,andtrackanycorrectionsmadetoavoiddiscriminationandbias.
□Askanddocumentwhataccommodationoptionsareincluded.
□Askanddocumentwhetherthevendorcollectscon?dentialdata.
□Askhowthevendorortoolstoresanddeletesdataandregulatestheuseoffacialrecognitionandvideoanalysistoolsduringpre-employment.
□Reviewotherorganization-speci?cregulatoryrequirementswithAIthatmayraisecomplianceissues.TheEmployeeRetirementIncomeSecurityActof1974,forinstance,has?duciarydutyrequirementsforretirementplansthatachatbotmightnotbeabletomeet.
UsingorImplementingLargeLanguageModelSolutions
□ThreatModelLLMcomponentsandarchitecturetrustboundaries.
□DataSecurity,verifyhowdataisclassi?edandprotectedbasedonsensitivity,includingpersonalandproprietarybusinessdata.(Howareuserpermissionsmanaged,andwhatsafeguardsareinplace?)
□AccessControl,implementleastprivilegeaccesscontrolsandimplementdefense-in-depthmeasures
□TrainingPi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機械拆遷合同(2篇)
- 2025年冀教版九年級生物下冊階段測試試卷含答案
- 2025年粵人版選擇性必修3歷史上冊階段測試試卷含答案
- 會計稅務課件:財務稅務規(guī)劃教案
- 2025年全國青少年禁毒知識競賽試題庫及答案(共310題)
- 2025年山東化工職業(yè)學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年宿遷澤達職業(yè)技術(shù)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年安徽礦業(yè)職業(yè)技術(shù)學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年安徽審計職業(yè)學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年寧波幼兒師范高等??茖W校高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 辦公室清潔培訓課件
- 梁湘潤《子平基礎概要》簡體版
- 圖形的位似課件
- 調(diào)料廠工作管理制度
- 人教版《道德與法治》四年級下冊教材簡要分析課件
- 2023年MRI技術(shù)操作規(guī)范
- 辦公用品、易耗品供貨服務方案
- 醫(yī)療廢物集中處置技術(shù)規(guī)范
- 媒介社會學備課
- 三相分離器原理及操作
- 新教科版五年級下冊科學全冊每節(jié)課后練習+答案(共28份)
評論
0/150
提交評論