版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
LLMAICybersecurity&GovernanceChecklist
FromtheOWASPTop10forLLMApplicationsTeam
Version:1.0
Published:February19,2024
RevisionHistory
Revision
Date
Author(s)
Description
0.1
2023-11-01
SandyDunn
initialdraft
0.5
2023-12-06
SD,Team
publicdraft
0.9
2023-02-15
SD,Team
pre-releasedraft
1.0
2024-02-19
SD,Team
publicreleasev1.0
Theinformationprovidedinthisdocumentdoesnot,andisnotintendedto,constitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.
Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.
1
Overview
5
1.1
ResponsibleandTrustworthyArti?cialIntelligence
6
1.2
WhoisThisFor?
7
1.3
WhyaChecklist?
7
1.4
NotComprehensive
7
1.5
LargeLanguageModelChallenges
7
1.6
LLMThreatCategories
8
1.7
Arti?cialIntelligenceSecurityandPrivacyTraining
9
1.8
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls9
1.9
FundamentalSecurityPrinciples
9
1.10
Risk
10
1.11
VulnerabilityandMitigationTaxonomy
10
2
DeterminingLLMStrategy
11
2.1
DeploymentStrategy
13
3
Checklist
14
3.1
AdversarialRisk
14
3.2
ThreatModeling
14
3.3
AIAssetInventory
14
3.4
AISecurityandPrivacyTraining
15
3.5
EstablishBusinessCases
15
3.6
Governance
16
3.7
Legal
17
3.8
Regulatory
18
3.9
UsingorImplementingLargeLanguageModelSolutions
19
3.10
Testing,Evaluation,Veri?cation,andValidation(TEVV)
19
3.11
ModelCardsandRiskCards
20
3.12
RAG:LargeLanguageModelOptimization
21
3.13
AIRedTeaming
21
4
Resources
22
A
Team
32
Overview
Everyinternetuserandcompanyshouldpreparefortheupcomingwaveofpowerfulgenerativearti?cialintelligence(GenAI)applications.GenAIhasenormouspromiseforinnovation,ef?ciency,andcommercialsuccessacrossavarietyofindustries.Still,likeanypowerfulearlystagetechnology,itbringsitsownsetofobviousandunexpectedchallenges.
Arti?cialintelligencehasadvancedgreatlyoverthelast50years,inconspicuouslysupportingavarietyofcorporateprocessesuntilChatGPT’spublicappearancedrovethedevelopmentanduseofLargeLanguageModels(LLMs)amongbothindividualsandenterprises.Initially,thesetechnologieswerelimitedtoacademicstudyortheexecutionofcertain,butvital,activitieswithincorporations,visibleonlytoaselectfew.However,recentadvancesindataavailability,computerpower,GenAIcapabilities,andthereleaseoftoolssuchasLlama2,ElevenLabs,andMidjourneyhaveraisedAIfromanichetogeneralwidespreadacceptance.TheseimprovementshavenotonlymadeGenAItechnologiesmoreaccessible,buttheyhavealsohighlightedthecriticalneedforenterprisestodevelopsolidstrategiesforintegratingandexploitingAIintheiroperations,representingahugestepforwardinhowweusetechnology.
?Arti?cialintelligence(AI)isabroadtermthatencompassesall?eldsofcomputersciencethatenablemachinestoaccomplishtasksthatwouldnormallyrequirehumanintelligence.MachinelearningandgenerativeAIaretwosubcategoriesofAI.
?MachinelearningisasubsetofAIthatfocusesoncreatingalgorithmsthatcanlearnfromdata.Machinelearningalgorithmsaretrainedonasetofdata,andthentheycanusethatdatatomakepredictionsordecisionsaboutnewdata.
?GenerativeAIisatypeofmachinelearningthatfocusesoncreatingnewdata.
?Alargelanguagemodel(LLM)isatypeofAImodelthatprocessesandgenerateshuman-liketext.Inthecontextofarti?cialintelligencea"model"referstoasystemthatistrainedtomakepredictionsbasedoninputdata.LLMsarespeci?callytrainedonlargedatasetsofnaturallanguageandthenamelargelanguagemodels.
OrganizationsareenteringunchartedterritoryinsecuringandoverseeingGenAIsolutions.TherapidadvancementofGenAIalsoopensdoorsforadversariestoenhancetheirattackstrategies,introducingadualchallengeofdefenseandthreatescalation.
Businessesusearti?cialintelligenceinmanyareas,includingHRforrecruiting,emailspamscreening,SIEMforbehavioralanalytics,andmanageddetectionandresponseapplications.However,thisdocument’sprimaryfocusisonLargeLanguageModelapplicationsandtheirfunctionincreatinggeneratedcontent.
ResponsibleandTrustworthyArti?cialIntelligence
Aschallengesandbene?tsofArti?cialIntelligenceemerge-andregulationsandlawsarepassed-theprinciplesandpillarsofresponsibleandtrustworthyAIusageareevolvingfromidealisticobjectsandconcernstoestablishedstandards.The
OWASPAIExchangeWorkingGroup
ismonitoringthesechangesandaddressingthebroaderandmorechallengingconsiderationsforallaspectsofarti?cialintelligence.
Figure1.1:Imagedepictingthepillarsoftrustworthyarti?cialintelligence
WhoisThisFor?
TheOWASPTop10forLLMApplicationsCybersecurityandGovernanceChecklistisforleadersacrossexecutive,tech,cybersecurity,privacy,compliance,andlegalareas,DevSecOps,MLSecOps,
andCybersecurityteamsanddefenders.Itisintendedforpeoplewhoarestrivingtostayaheadin
thefast-movingAIworld,aimingnotjusttoleverageAIforcorporatesuccessbutalsotoprotectagainsttherisksofhastyorinsecureAIimplementations.Theseleadersandteamsmustcreatetacticstograbopportunities,combatchallenges,andmitigaterisks.
Thischecklistisintendedtohelpthesetechnologyandbusinessleadersquicklyunderstandtherisksandbene?tsofusingLLM,allowingthemtofocusondevelopingacomprehensivelistofcriticalareasandtasksneededtodefendandprotecttheorganizationastheydevelopaLargeLanguageModelstrategy.
ItisthehopeoftheOWASPTop10fortheLLMApplicationsteamthatthislistwillhelporganizationsimprovetheirexistingdefensivetechniquesanddeveloptechniquestoaddressthenewthreatsthatcomefromusingthisexcitingtechnology.
WhyaChecklist?
Checklistsusedtoformulatestrategiesimproveaccuracy,de?neobjectives,preserveuniformity,andpromotefocuseddeliberatework,reducingoversightsandmisseddetails.Followingachecklistnotonlyincreasestrustinasafeadoptionjourney,butalsoencouragesfutureorganizationsinnovationsbyprovidingasimpleandeffectivestrategyforcontinuousimprovement.
NotComprehensive
AlthoughthisdocumentintendstosupportorganizationsindevelopinganinitialLLMstrategyinarapidlychangingtechnical,legal,andregulatoryenvironment,itisnotexhaustiveanddoesnotcovereveryusecaseorobligation.WhileusingthisdocumentisOrganizationsshouldextendassessmentsandpracticesbeyondthescopeoftheprovidedchecklistasrequiredfortheirusecaseorjurisdiction.
LargeLanguageModelChallenges
LargeLanguagemodelsfaceseveralseriousanduniqueissues.OneofthemostimportantisthatwhileworkingwithLLMs,thecontrolanddataplanescannotbestrictlyisolatedorseparable.Anothersigni?cantchallengeisthatLLMsarenondeterministicbydesign,yieldingadifferentoutcomewhenpromptedorrequested.LLMsemploysemanticsearchratherthankeywordsearch.Thekeydistinctionbetweenthetwoisthatthemodel’salgorithmprioritizesthetermsinitsresponse.Thisisasigni?cantdeparturefromhowconsumershavepreviouslyusedtechnology,andithasanimpactontheconsistencyandreliabilityofthe?ndings.Hallucinations,emergingfromthegapsandtraining?awsinthedatathemodelistrainedon,aretheresultofthismethod.
Therearemethodstoimprovereliabilityandreducetheattacksurfaceforjailbreaking,modeltricking,andhallucinations,butthereisatrade-offbetweenrestrictionsandutilityinbothcostandfunctionality.
LLMuseandLLMapplicationsincreaseanorganization’sattacksurface.Somerisksassociated
withLLMsareunique,butmanyarefamiliarissues,suchastheknownsoftwarebillofmaterials(SBoM),supplychain,datalossprotection(DLP),andauthorizedaccess.TherearealsoincreasedrisksnotdirectlyrelatedtoGenAI,butGenAIincreasestheef?ciency,capability,andeffectivenessofattackerswhoattackandthreatenorganizations.
AdversariesareincreasinglyharnessingLLMandGenerativeAItoolstore?neandexpeditetraditional
methodsofattackingorganizations,individuals,andgovernmentsystems.LLMfacilitatestheirabilitytoenhancetechniquesallowingthemtoeffortlesslycraftnewmalware,potentiallyembeddedwithnovelzero-dayvulnerabilitiesordesignedtoevadedetection.Theycanalsogeneratesophisticated,unique,ortailoredphishingschemes.Thecreationofconvincingdeepfakes,whethervideooraudio,furtherpromotestheirsocialengineeringploys.Additionally,thesetoolsenablethemtoexecuteintrusionsanddevelopinnovativehackingcapabilities.Inthefuture,more“tailored”andcompounduseofAItechnologybycriminalactorswilldemandspeci?cresponsesanddedicatedsolutionsfor
anorganization’sappropriatedefenseandresiliencecapabilities.
OrganizationsalsofacethethreatofNOTutilizingthecapabilitiesofLLMssuchasacompetitivedisadvantage,marketperceptionbycustomersandpartnersofbeingoutdated,inabilitytoscalepersonalizedcommunications,innovationstagnation,operationalinef?ciencies,thehigherriskofhumanerrorinprocesses,andinef?cientallocationofhumanresources.
UnderstandingthedifferentkindsofthreatsandintegratingthemwiththebusinessstrategywillhelpweighboththeprosandconsofusingLargeLanguageModels(LLMs)againstnotusingthem,makingsuretheyaccelerateratherthanhinderthebusiness’smeetingbusinessobjectives.
LLMThreatCategories
Figure1.2:ImagedepictingthetypesofAIthreats
Arti?cialIntelligenceSecurityandPrivacyTraining
Employeesthroughoutorganizationsbene?tfromtrainingtounderstandarti?cialintelligence,generativearti?cialintelligence,andthefuturepotentialconsequencesofbuilding,buying,orutilizingLLMs.Trainingforpermissibleuseandsecurityawarenessshouldtargetallemployeesaswellasbemorespecializedforcertainpositionssuchashumanresources,legal,developers,datateams,andsecurityteams.
Fairusepoliciesandhealthyinteractionarekeyaspectsthat,ifincorporatedfromtheverystart,willbeacornerstonetothesuccessoffutureAIcybersecurityawarenesscampaigns.Thiswillnecessarilyprovideuserswithknowledgeofthebasicrulesforinteractionaswellastheabilitytoseparategoodbehaviorfrombadorunethicalbehavior.
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls
WhileAIandgeneratedAIaddanewdimensiontocybersecurity,resilience,privacy,andmeetinglegalandregulatoryrequirements,thebestpracticesthathavebeenaroundforalongtimearestillthebestwaytoidentifyissues,?ndvulnerabilities,?xthem,andmitigatepotentialsecurityissues.
?Con?rmthemanagementofarti?cialintelligencesystemsisintegratedwithexistingorganizationalpractices.
?Con?rmAIMLsystemsfollowexistingprivacy,governance,andsecuritypractices,withAIspeci?cprivacy,governance,andsecuritypracticesimplementedwhenrequired.
FundamentalSecurityPrinciples
LLMcapabilitiesintroduceadifferenttypeofattackandattacksurface.LLMsarevulnerabletocomplexbusinesslogicbugs,suchaspromptinjection,insecureplugindesign,andremotecodeexecution.Existingbestpracticesarethebestwaytosolvetheseissues.Aninternalproductsecurityteamthatunderstandssecuresoftwarereview,architecture,datagovernance,andthird-partyassessmentsThecybersecurityteamshouldalsocheckhowstrongthecurrentcontrolsareto?ndproblemsthatcouldbemadeworsebyLLM,suchasvoicecloning,impersonation,orbypassingcaptchas.Givenrecentadvancementsinmachinelearning,NLP(NaturalLanguageProcessing),NLU(NaturalLanguageUnderstanding),DeepLearning,andmorerecently,LLMs(LargeLanguageModels)andGenerativeAI,itisrecommendedtoincludeprofessionalspro?cientintheseareasalongsidecybersecurityanddevopsteams.Theirexpertisewillnotonlyaidinadoptingthesetechnologiesbutalsoindevelopinginnovativeanalysesandresponsestoemergingchallenges.
Risk
ReferencetoriskusestheISO31000de?nition:Risk="effectofuncertaintyonobjectives."LLMrisksincludedinthechecklistincludesatargetedlistofLLMrisksthataddressadversarial,safety,legal,regulatory,reputation,?nancial,andcompetitiverisks.
VulnerabilityandMitigationTaxonomy
Currentsystemsforclassifyingvulnerabilitiesandsharingthreatinformation,likeOVAL,STIX,CVE,andCWE,arestilldevelopingtheabilitytomonitorandalertdefendersaboutvulnerabilitiesandthreatsspeci?ctoLargeLanguageModels(LLMs)andPredictiveModels.Itisexpectedthatorganizationswillleanontheseestablishedandrecognizedstandards,suchasCVEforvulnerabilityclassi?cationandSTIXfortheexchangeofcyberthreatintelligence(CTI),whenvulnerabilitiesorthreatstoAI/MLsystemsandtheirsupplychainsareidenti?ed.
DeterminingLLMStrategy
TherapidexpansionofLargeLanguageModel(LLM)applicationshasheightenedtheattentionandexaminationofallAI/MLsystemsusedinbusinessoperations,encompassingbothGenerativeAIandlong-establishedPredictiveAI/MLsystems.Thisincreasedfocusexposespotentialrisks,suchasattackerstargetingsystemsthatwerepreviouslyoverlookedandgovernanceorlegalchallengesthatmayhavebeendisregardedintermsoflegal,privacy,liability,orwarrantyissues.ForanyorganizationleveragingAI/MLsystemsinitsoperations,it’scriticaltoassessandestablishcomprehensivepolicies,governance,securityprotocols,privacymeasures,andaccountabilitystandardstoensurethesetechnologiesalignwithbusinessprocessessecurelyandethically.
Attackers,oradversaries,providethemostimmediateandharmfulthreattoenterprises,people,andgovernmentagencies.Theirgoals,whichrangefrom?nancialgaintoespionage,pushthemtostealcriticalinformation,disruptoperations,anddamagecon?dence.Furthermore,theirabilitytoharnessnewtechnologiessuchasAIandmachinelearningincreasesthespeedandsophisticationofattacks,makingitdif?cultfordefensestostayaheadofattacks.
Themostpressingnon-adversaryLLMthreatformanyorganizationsstemfrom"ShadowAI":
employeesusingunapprovedonlineAItools,unsafebrowserplugins,andthird-partyapplicationsthatintroduceLLMfeaturesviaupdatesorupgrades,circumventingstandardsoftwareapprovalprocesses.
Figure2.1:Imageofoptionsfordeploymentstrategy
DeploymentStrategy
Thescopesrangefromleveragingpublicconsumerapplicationstotrainingproprietarymodelsonprivatedata.Factorslikeusecasesensitivity,capabilitiesneeded,andresourcesavailablehelpdeterminetherightbalanceofconveniencevs.control.However,understandingthese?vemodeltypesprovidesaframeworkforevaluatingoptions.
Figure2.2:Imageofoptionsfordeploymenttypes
Checklist
AdversarialRisk
AdversarialRiskincludescompetitorsandattackers.
□Scrutinizehowcompetitorsareinvestinginarti?cialintelligence.AlthoughtherearerisksinAIadoption,therearealsobusinessbene?tsthatmayimpactfuturemarketpositions.
□Investigatetheimpactofcurrentcontrols,suchaspasswordresets,whichusevoicerecognitionwhichmaynolongerprovidetheappropriatedefensivesecurityfromnewGenAIenhancedattacks.
□UpdatetheIncidentResponsePlanandplaybooksforGenAIenhancedattacksandAIMLspeci?cincidents.
ThreatModeling
Threatmodelingishighlyrecommendedtoidentifythreatsandexamineprocessesandsecuritydefenses.Threatmodelingisasetofsystematic,repeatableprocessesthatenablemakingreasonablesecuritydecisionsforapplications,software,andsystems.ThreatmodelingforGenAIacceleratedattacksandbeforedeployingLLMsisthemostcosteffectivewaytoIdentifyandmitigaterisks,protectdata,protectprivacy,andensureasecure,compliantintegrationwithinthebusiness.
□Howwillattackersaccelerateexploitattacksagainsttheorganization,employees,executives,orusers?Organizationsshouldanticipate"hyper-personalized"attacksatscaleusingGenerativeAI.LLM-assistedSpearPhishingattacksarenowexponentiallymoreeffective,targeted,andweaponizedforanattack.
□HowcouldGenAIbeusedforattacksonthebusiness’scustomersorclientsthroughspoo?ngorGenAIgeneratedcontent?
□CanthebusinessdetectandneutralizeharmfulormaliciousinputsorqueriestoLLMsolutions?
□CanthebusinesssafeguardconnectionswithexistingsystemsanddatabaseswithsecureintegrationsatallLLMtrustboundaries?
□Doesthebusinesshaveinsiderthreatmitigationtopreventmisusebyauthorizedusers?
□CanthebusinesspreventunauthorizedaccesstoproprietarymodelsordatatoprotectIntellectualProperty?
□Canthebusinesspreventthegenerationofharmfulorinappropriatecontentwithautomatedcontent?ltering?
AIAssetInventory
AnAIassetinventoryshouldapplytobothinternallydevelopedandexternalorthird-partysolutions.
□CatalogexistingAIservices,tools,andowners.Designateataginassetmanagementforspeci?cinventory.
□IncludeAIcomponentsintheSoftwareBillofMaterial(SBOM),acomprehensivelistofallthesoftwarecomponents,dependencies,andmetadataassociatedwithapplications.
□CatalogAIdatasourcesandthesensitivityofthedata(protected,con?dential,public)
□EstablishifpentestingorredteamingofdeployedAIsolutionsisrequiredtodeterminethecurrentattacksurfacerisk.
□CreateanAIsolutiononboardingprocess.
□EnsureskilledITadminstaffisavailableeitherinternallyorexternally,followingSBoMrequirements.
AISecurityandPrivacyTraining
□ActivelyengagewithemployeestounderstandandaddressconcernswithplannedLLMinitiatives.
□Establishacultureofopen,andtransparentcommunicationontheorganization’suseofpredictiveorgenerativeAIwithintheorganizationprocess,systems,employeemanagementandsupport,andcustomerengagementsandhowitsuseisgoverned,managed,andrisksaddressed.
□Trainallusersonethics,responsibility,andlegalissuessuchaswarranty,license,andcopyright.
□UpdatesecurityawarenesstrainingtoincludeGenAIrelatedthreats.Voicecloningandimage
cloning,aswellasinanticipationofincreasedspearphishingattacks
□AnyadoptedGenAIsolutionsshouldincludetrainingforbothDevOpsandcybersecurityforthedeploymentpipelinetoensureAIsafetyandsecurityassurances.
EstablishBusinessCases
SolidbusinesscasesareessentialtodeterminingthebusinessvalueofanyproposedAIsolution,balancingriskandbene?ts,andevaluatingandtestingreturnoninvestment.Thereareanenormousnumberofpotentialusecases;afewexamplesareprovided.
□Enhancecustomerexperience
□Betteroperationalef?ciency
□Betterknowledgemanagement
□Enhancedinnovation
□MarketResearchandCompetitorAnalysis
□Documentcreation,translation,summarization,andanalysis
Governance
CorporategovernanceinLLMisneededtoprovideorganizationswithtransparencyandaccountability.IdentifyingAIplatformorprocessownerswhoarepotentiallyfamiliarwiththetechnologyorthe
selectedusecasesforthebusinessisnotonlyadvisedbutalsonecessarytoensureadequate
reactionspeedthatpreventscollateraldamagestowellestablishedenterprisedigitalprocesses.
□Establishtheorganization’sAIRACIchart(whoisresponsible,whoisaccountable,whoshouldbeconsulted,andwhoshouldbeinformed)
□DocumentandassignAIrisk,riskassessments,andgovernanceresponsibilitywithintheorganization.
□Establishdatamanagementpolicies,includingtechnicalenforcement,regardingdataclassi?cationandusagelimitations.Modelsshouldonlyleveragedataclassi?edfortheminimumaccesslevelofanyuserofthesystem.Forexample,updatethedataprotectionpolicytoemphasizenottoinputprotectedorcon?dentialdataintononbusiness-managedtools.
□CreateanAIPolicysupportedbyestablishedpolicy(e.g.,standardofgoodconduct,dataprotection,softwareuse)
□PublishanacceptableusematrixforvariousgenerativeAItoolsforemployeestouse.
□DocumentthesourcesandmanagementofanydatathattheorganizationusesfromthegenerativeLLMmodels.
Legal
ManyofthelegalimplicationsofAIareunde?nedandpotentiallyverycostly.AnIT,security,andlegalpartnershipiscriticaltoidentifyinggapsandaddressingobscuredecisions.
□Con?rmproductwarrantiesareclearintheproductdevelopmentstreamtoassignwhoisresponsibleforproductwarrantieswithAI.
□ReviewandupdateexistingtermsandconditionsforanyGenAIconsiderations.
□ReviewAIEULAagreements.End-userlicenseagreementsforGenAIplatformsareverydifferentinhowtheyhandleuserprompts,outputrightsandownership,dataprivacy,compliance,liability,privacy,andlimitsonhowoutputcanbeused.
□OrganizationsEULAforcustomers,Modifyend-useragreementstopreventtheorganizationfromincurringliabilitiesrelatedtoplagiarism,biaspropagation,orintellectualpropertyinfringementthroughAI-generatedcontent.
□ReviewexistingAI-assistedtoolsusedforcodedevelopment.Achatbot’sabilitytowritecodecanthreatenacompany’sownershiprightstoitsproductifachatbotisusedtogeneratecodefortheproduct.Forexample,itcouldcallintoquestionthestatusandprotectionofthegeneratedcontentandwhoholdstherighttousethegeneratedcontent.
□Reviewanyriskstointellectualproperty.Intellectualpropertygeneratedbyachatbotcouldbeinjeopardyifimproperlyobtaineddatawasusedduringthegenerativeprocess,whichissubjecttocopyright,trademark,orpatentprotection.IfAIproductsuseinfringingmaterial,itcreatesariskfortheoutputsoftheAI,whichmayresultinintellectualpropertyinfringement.
□Reviewanycontractswithindemni?cationprovisions.Indemni?cationclausestrytoputtheresponsibilityforaneventthatleadstoliabilityonthepersonwhowasmoreatfaultforitorwhohadthebestchanceofstoppingit.EstablishguardrailstodeterminewhethertheprovideroftheAIoritsusercausedtheevent,givingrisetoliability.
□ReviewliabilityforpotentialinjuryandpropertydamagecausedbyAIsystems.
□Reviewinsurancecoverage.Traditional(D&O)liabilityandcommercialgeneralliabilityinsurancepoliciesarelikelyinsuf?cienttofullyprotectAIuse.
□Identifyanycopyrightissues.Humanauthorshipisrequiredforcopyright.Anorganizationmayalsobeliableforplagiarism,propagationofbias,orintellectualpropertyinfringementifLLMtoolsaremisused.
□EnsureagreementsareinplaceforcontractorsandappropriateuseofAIforanydevelopmentorprovidedservices.
□RestrictorprohibittheuseofgenerativeAItoolsforemployeesorcontractorswhereenforceablerightsmaybeanissueorwherethereareIPinfringementconcerns.
□AssessandAIsolutionsusedforemployeemanagementorhiringcouldresultindisparatetreatmentclaimsordisparateimpactclaims.
□MakesuretheAIsolutionsdonotcollectorsharesensitiveinformationwithoutproperconsentorauthorization.
Regulatory
TheEUAIActisanticipatedtobethe?rstcomprehensiveAIlawbutwillapplyin2025attheearliest.TheEU?GeneralDataProtectionRegulation(GDPR)doesnotspeci?callyaddressAIbutincludesrulesfordatacollection,datasecurity,fairnessandtransparency,accuracyandreliability,andaccountability,whichcanimpactGenAIuse.IntheUnitedStates,AIregulationisincludedwithinbroaderconsumerprivacylaws.TenUSstateshavepassedlawsorhavelawsthatwillgointoeffectbytheendof2023.
FederalorganizationssuchastheUSEqualEmploymentOpportunityCommission(EEOC),theConsumerFinancialProtectionBureau(CFPB),theFederalTradeCommission(FTC),andtheUSDepartmentofJustice?CivilRightsDivision(DOJ)arecloselymonitoringhiringfairness.
□DetermineCountry,State,orotherGovernmentspeci?cAIcompliancerequirements.
□Determinecompliancerequirementsforrestrictingelectronicmonitoringofemployeesandemployment-relatedautomateddecisionsystems(Vermont,California,Maryland,NewYork,NewJersey)
□DeterminecompliancerequirementsforconsentforfacialrecognitionandtheAIvideoanalysisrequired(Illinois,Maryland,Washington,Vermont)
□ReviewanyAItoolsinuseorbeingconsideredforemployeehiringormanagement.
□Con?rmthevendor?compliancewithapplicableAIlawsandbestpractices.
□AskanddocumentanyproductsusingAIduringthehiringprocess.Askhowthemodelwastrained,andhowitismonitored,andtrackanycorrectionsmadetoavoiddiscriminationandbias.
□Askanddocumentwhataccommodationoptionsareincluded.
□Askanddocumentwhetherthevendorcollectscon?dentialdata.
□Askhowthevendorortoolstoresanddeletesdataandregulatestheuseoffacialrecognitionandvideoanalysistoolsduringpre-employment.
□Reviewotherorganization-speci?cregulatoryrequirementswithAIthatmayraisecomplianceissues.TheEmployeeRetirementIncomeSecurityActof1974,forinstance,has?duciarydutyrequirementsforretirementplansthatachatbotmightnotbeabletomeet.
UsingorImplementingLargeLanguageModelSolutions
□ThreatModelLLMcomponentsandarchitecturetrustboundaries.
□DataSecurity,verifyhowdataisclassi?edandprotectedbasedonsensitivity,includingpersonalandproprietarybusinessdata.(Howareuserpermissionsmanaged,andwhatsafeguardsareinplace?)
□AccessControl,implementleastprivilegeaccesscontrolsandimplementdefense-in-depthmeasures
□TrainingPi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特色酒店租賃合同
- 2024年度貨物進口與銷售合同2篇
- 2024年歐盟數(shù)字單一市場戰(zhàn)略合同
- 2024年度綠色建筑借貸擔保合同示范文本3篇
- 2025采購機票合同范本
- 2024年二手汽車買賣合同樣本3篇
- 臨時辦公搭棚施工合同范本
- 2025建筑安裝工程招標合同書范本
- 公司宿舍晚歸規(guī)定
- 企業(yè)文化建設輔導員聘任書
- 小班語言活動《我的妹妹是跟屁蟲》0
- 2023年中國華電集團發(fā)電運營有限公司招聘筆試題庫及答案解析
- 2023年考研政治馬原真題及答案解析精選
- LY/T 3148-2019木雕及其制品通用技術要求
- GB/T 26162.1-2010信息與文獻文件管理第1部分:通則
- GB/T 14506.28-1993硅酸鹽巖石化學分析方法X射線熒光光譜法測定主、次元素量
- 企業(yè)工作務虛會發(fā)言材料
- 大學生健康運動處方復習練習習題
- DJI 產品交付理論試題
- 二年級數(shù)學文化課-密碼鎖的奧秘課件
- 《網(wǎng)絡傳播概論》考試復習題庫(附答案)
評論
0/150
提交評論