OWASP LLM人工智能網(wǎng)絡安全與治理清單(英文版)_第1頁
OWASP LLM人工智能網(wǎng)絡安全與治理清單(英文版)_第2頁
OWASP LLM人工智能網(wǎng)絡安全與治理清單(英文版)_第3頁
OWASP LLM人工智能網(wǎng)絡安全與治理清單(英文版)_第4頁
OWASP LLM人工智能網(wǎng)絡安全與治理清單(英文版)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

LLMAICybersecurity&GovernanceChecklist

FromtheOWASPTop10forLLMApplicationsTeam

Version:1.0

Published:February19,2024

RevisionHistory

Revision

Date

Author(s)

Description

0.1

2023-11-01

SandyDunn

initialdraft

0.5

2023-12-06

SD,Team

publicdraft

0.9

2023-02-15

SD,Team

pre-releasedraft

1.0

2024-02-19

SD,Team

publicreleasev1.0

Theinformationprovidedinthisdocumentdoesnot,andisnotintendedto,constitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.

Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.

1

Overview

5

1.1

ResponsibleandTrustworthyArti?cialIntelligence

6

1.2

WhoisThisFor?

7

1.3

WhyaChecklist?

7

1.4

NotComprehensive

7

1.5

LargeLanguageModelChallenges

7

1.6

LLMThreatCategories

8

1.7

Arti?cialIntelligenceSecurityandPrivacyTraining

9

1.8

IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls9

1.9

FundamentalSecurityPrinciples

9

1.10

Risk

10

1.11

VulnerabilityandMitigationTaxonomy

10

2

DeterminingLLMStrategy

11

2.1

DeploymentStrategy

13

3

Checklist

14

3.1

AdversarialRisk

14

3.2

ThreatModeling

14

3.3

AIAssetInventory

14

3.4

AISecurityandPrivacyTraining

15

3.5

EstablishBusinessCases

15

3.6

Governance

16

3.7

Legal

17

3.8

Regulatory

18

3.9

UsingorImplementingLargeLanguageModelSolutions

19

3.10

Testing,Evaluation,Veri?cation,andValidation(TEVV)

19

3.11

ModelCardsandRiskCards

20

3.12

RAG:LargeLanguageModelOptimization

21

3.13

AIRedTeaming

21

4

Resources

22

A

Team

32

Overview

Everyinternetuserandcompanyshouldpreparefortheupcomingwaveofpowerfulgenerativearti?cialintelligence(GenAI)applications.GenAIhasenormouspromiseforinnovation,ef?ciency,andcommercialsuccessacrossavarietyofindustries.Still,likeanypowerfulearlystagetechnology,itbringsitsownsetofobviousandunexpectedchallenges.

Arti?cialintelligencehasadvancedgreatlyoverthelast50years,inconspicuouslysupportingavarietyofcorporateprocessesuntilChatGPT’spublicappearancedrovethedevelopmentanduseofLargeLanguageModels(LLMs)amongbothindividualsandenterprises.Initially,thesetechnologieswerelimitedtoacademicstudyortheexecutionofcertain,butvital,activitieswithincorporations,visibleonlytoaselectfew.However,recentadvancesindataavailability,computerpower,GenAIcapabilities,andthereleaseoftoolssuchasLlama2,ElevenLabs,andMidjourneyhaveraisedAIfromanichetogeneralwidespreadacceptance.TheseimprovementshavenotonlymadeGenAItechnologiesmoreaccessible,buttheyhavealsohighlightedthecriticalneedforenterprisestodevelopsolidstrategiesforintegratingandexploitingAIintheiroperations,representingahugestepforwardinhowweusetechnology.

?Arti?cialintelligence(AI)isabroadtermthatencompassesall?eldsofcomputersciencethatenablemachinestoaccomplishtasksthatwouldnormallyrequirehumanintelligence.MachinelearningandgenerativeAIaretwosubcategoriesofAI.

?MachinelearningisasubsetofAIthatfocusesoncreatingalgorithmsthatcanlearnfromdata.Machinelearningalgorithmsaretrainedonasetofdata,andthentheycanusethatdatatomakepredictionsordecisionsaboutnewdata.

?GenerativeAIisatypeofmachinelearningthatfocusesoncreatingnewdata.

?Alargelanguagemodel(LLM)isatypeofAImodelthatprocessesandgenerateshuman-liketext.Inthecontextofarti?cialintelligencea"model"referstoasystemthatistrainedtomakepredictionsbasedoninputdata.LLMsarespeci?callytrainedonlargedatasetsofnaturallanguageandthenamelargelanguagemodels.

OrganizationsareenteringunchartedterritoryinsecuringandoverseeingGenAIsolutions.TherapidadvancementofGenAIalsoopensdoorsforadversariestoenhancetheirattackstrategies,introducingadualchallengeofdefenseandthreatescalation.

Businessesusearti?cialintelligenceinmanyareas,includingHRforrecruiting,emailspamscreening,SIEMforbehavioralanalytics,andmanageddetectionandresponseapplications.However,thisdocument’sprimaryfocusisonLargeLanguageModelapplicationsandtheirfunctionincreatinggeneratedcontent.

ResponsibleandTrustworthyArti?cialIntelligence

Aschallengesandbene?tsofArti?cialIntelligenceemerge-andregulationsandlawsarepassed-theprinciplesandpillarsofresponsibleandtrustworthyAIusageareevolvingfromidealisticobjectsandconcernstoestablishedstandards.The

OWASPAIExchangeWorkingGroup

ismonitoringthesechangesandaddressingthebroaderandmorechallengingconsiderationsforallaspectsofarti?cialintelligence.

Figure1.1:Imagedepictingthepillarsoftrustworthyarti?cialintelligence

WhoisThisFor?

TheOWASPTop10forLLMApplicationsCybersecurityandGovernanceChecklistisforleadersacrossexecutive,tech,cybersecurity,privacy,compliance,andlegalareas,DevSecOps,MLSecOps,

andCybersecurityteamsanddefenders.Itisintendedforpeoplewhoarestrivingtostayaheadin

thefast-movingAIworld,aimingnotjusttoleverageAIforcorporatesuccessbutalsotoprotectagainsttherisksofhastyorinsecureAIimplementations.Theseleadersandteamsmustcreatetacticstograbopportunities,combatchallenges,andmitigaterisks.

Thischecklistisintendedtohelpthesetechnologyandbusinessleadersquicklyunderstandtherisksandbene?tsofusingLLM,allowingthemtofocusondevelopingacomprehensivelistofcriticalareasandtasksneededtodefendandprotecttheorganizationastheydevelopaLargeLanguageModelstrategy.

ItisthehopeoftheOWASPTop10fortheLLMApplicationsteamthatthislistwillhelporganizationsimprovetheirexistingdefensivetechniquesanddeveloptechniquestoaddressthenewthreatsthatcomefromusingthisexcitingtechnology.

WhyaChecklist?

Checklistsusedtoformulatestrategiesimproveaccuracy,de?neobjectives,preserveuniformity,andpromotefocuseddeliberatework,reducingoversightsandmisseddetails.Followingachecklistnotonlyincreasestrustinasafeadoptionjourney,butalsoencouragesfutureorganizationsinnovationsbyprovidingasimpleandeffectivestrategyforcontinuousimprovement.

NotComprehensive

AlthoughthisdocumentintendstosupportorganizationsindevelopinganinitialLLMstrategyinarapidlychangingtechnical,legal,andregulatoryenvironment,itisnotexhaustiveanddoesnotcovereveryusecaseorobligation.WhileusingthisdocumentisOrganizationsshouldextendassessmentsandpracticesbeyondthescopeoftheprovidedchecklistasrequiredfortheirusecaseorjurisdiction.

LargeLanguageModelChallenges

LargeLanguagemodelsfaceseveralseriousanduniqueissues.OneofthemostimportantisthatwhileworkingwithLLMs,thecontrolanddataplanescannotbestrictlyisolatedorseparable.Anothersigni?cantchallengeisthatLLMsarenondeterministicbydesign,yieldingadifferentoutcomewhenpromptedorrequested.LLMsemploysemanticsearchratherthankeywordsearch.Thekeydistinctionbetweenthetwoisthatthemodel’salgorithmprioritizesthetermsinitsresponse.Thisisasigni?cantdeparturefromhowconsumershavepreviouslyusedtechnology,andithasanimpactontheconsistencyandreliabilityofthe?ndings.Hallucinations,emergingfromthegapsandtraining?awsinthedatathemodelistrainedon,aretheresultofthismethod.

Therearemethodstoimprovereliabilityandreducetheattacksurfaceforjailbreaking,modeltricking,andhallucinations,butthereisatrade-offbetweenrestrictionsandutilityinbothcostandfunctionality.

LLMuseandLLMapplicationsincreaseanorganization’sattacksurface.Somerisksassociated

withLLMsareunique,butmanyarefamiliarissues,suchastheknownsoftwarebillofmaterials(SBoM),supplychain,datalossprotection(DLP),andauthorizedaccess.TherearealsoincreasedrisksnotdirectlyrelatedtoGenAI,butGenAIincreasestheef?ciency,capability,andeffectivenessofattackerswhoattackandthreatenorganizations.

AdversariesareincreasinglyharnessingLLMandGenerativeAItoolstore?neandexpeditetraditional

methodsofattackingorganizations,individuals,andgovernmentsystems.LLMfacilitatestheirabilitytoenhancetechniquesallowingthemtoeffortlesslycraftnewmalware,potentiallyembeddedwithnovelzero-dayvulnerabilitiesordesignedtoevadedetection.Theycanalsogeneratesophisticated,unique,ortailoredphishingschemes.Thecreationofconvincingdeepfakes,whethervideooraudio,furtherpromotestheirsocialengineeringploys.Additionally,thesetoolsenablethemtoexecuteintrusionsanddevelopinnovativehackingcapabilities.Inthefuture,more“tailored”andcompounduseofAItechnologybycriminalactorswilldemandspeci?cresponsesanddedicatedsolutionsfor

anorganization’sappropriatedefenseandresiliencecapabilities.

OrganizationsalsofacethethreatofNOTutilizingthecapabilitiesofLLMssuchasacompetitivedisadvantage,marketperceptionbycustomersandpartnersofbeingoutdated,inabilitytoscalepersonalizedcommunications,innovationstagnation,operationalinef?ciencies,thehigherriskofhumanerrorinprocesses,andinef?cientallocationofhumanresources.

UnderstandingthedifferentkindsofthreatsandintegratingthemwiththebusinessstrategywillhelpweighboththeprosandconsofusingLargeLanguageModels(LLMs)againstnotusingthem,makingsuretheyaccelerateratherthanhinderthebusiness’smeetingbusinessobjectives.

LLMThreatCategories

Figure1.2:ImagedepictingthetypesofAIthreats

Arti?cialIntelligenceSecurityandPrivacyTraining

Employeesthroughoutorganizationsbene?tfromtrainingtounderstandarti?cialintelligence,generativearti?cialintelligence,andthefuturepotentialconsequencesofbuilding,buying,orutilizingLLMs.Trainingforpermissibleuseandsecurityawarenessshouldtargetallemployeesaswellasbemorespecializedforcertainpositionssuchashumanresources,legal,developers,datateams,andsecurityteams.

Fairusepoliciesandhealthyinteractionarekeyaspectsthat,ifincorporatedfromtheverystart,willbeacornerstonetothesuccessoffutureAIcybersecurityawarenesscampaigns.Thiswillnecessarilyprovideuserswithknowledgeofthebasicrulesforinteractionaswellastheabilitytoseparategoodbehaviorfrombadorunethicalbehavior.

IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls

WhileAIandgeneratedAIaddanewdimensiontocybersecurity,resilience,privacy,andmeetinglegalandregulatoryrequirements,thebestpracticesthathavebeenaroundforalongtimearestillthebestwaytoidentifyissues,?ndvulnerabilities,?xthem,andmitigatepotentialsecurityissues.

?Con?rmthemanagementofarti?cialintelligencesystemsisintegratedwithexistingorganizationalpractices.

?Con?rmAIMLsystemsfollowexistingprivacy,governance,andsecuritypractices,withAIspeci?cprivacy,governance,andsecuritypracticesimplementedwhenrequired.

FundamentalSecurityPrinciples

LLMcapabilitiesintroduceadifferenttypeofattackandattacksurface.LLMsarevulnerabletocomplexbusinesslogicbugs,suchaspromptinjection,insecureplugindesign,andremotecodeexecution.Existingbestpracticesarethebestwaytosolvetheseissues.Aninternalproductsecurityteamthatunderstandssecuresoftwarereview,architecture,datagovernance,andthird-partyassessmentsThecybersecurityteamshouldalsocheckhowstrongthecurrentcontrolsareto?ndproblemsthatcouldbemadeworsebyLLM,suchasvoicecloning,impersonation,orbypassingcaptchas.Givenrecentadvancementsinmachinelearning,NLP(NaturalLanguageProcessing),NLU(NaturalLanguageUnderstanding),DeepLearning,andmorerecently,LLMs(LargeLanguageModels)andGenerativeAI,itisrecommendedtoincludeprofessionalspro?cientintheseareasalongsidecybersecurityanddevopsteams.Theirexpertisewillnotonlyaidinadoptingthesetechnologiesbutalsoindevelopinginnovativeanalysesandresponsestoemergingchallenges.

Risk

ReferencetoriskusestheISO31000de?nition:Risk="effectofuncertaintyonobjectives."LLMrisksincludedinthechecklistincludesatargetedlistofLLMrisksthataddressadversarial,safety,legal,regulatory,reputation,?nancial,andcompetitiverisks.

VulnerabilityandMitigationTaxonomy

Currentsystemsforclassifyingvulnerabilitiesandsharingthreatinformation,likeOVAL,STIX,CVE,andCWE,arestilldevelopingtheabilitytomonitorandalertdefendersaboutvulnerabilitiesandthreatsspeci?ctoLargeLanguageModels(LLMs)andPredictiveModels.Itisexpectedthatorganizationswillleanontheseestablishedandrecognizedstandards,suchasCVEforvulnerabilityclassi?cationandSTIXfortheexchangeofcyberthreatintelligence(CTI),whenvulnerabilitiesorthreatstoAI/MLsystemsandtheirsupplychainsareidenti?ed.

DeterminingLLMStrategy

TherapidexpansionofLargeLanguageModel(LLM)applicationshasheightenedtheattentionandexaminationofallAI/MLsystemsusedinbusinessoperations,encompassingbothGenerativeAIandlong-establishedPredictiveAI/MLsystems.Thisincreasedfocusexposespotentialrisks,suchasattackerstargetingsystemsthatwerepreviouslyoverlookedandgovernanceorlegalchallengesthatmayhavebeendisregardedintermsoflegal,privacy,liability,orwarrantyissues.ForanyorganizationleveragingAI/MLsystemsinitsoperations,it’scriticaltoassessandestablishcomprehensivepolicies,governance,securityprotocols,privacymeasures,andaccountabilitystandardstoensurethesetechnologiesalignwithbusinessprocessessecurelyandethically.

Attackers,oradversaries,providethemostimmediateandharmfulthreattoenterprises,people,andgovernmentagencies.Theirgoals,whichrangefrom?nancialgaintoespionage,pushthemtostealcriticalinformation,disruptoperations,anddamagecon?dence.Furthermore,theirabilitytoharnessnewtechnologiessuchasAIandmachinelearningincreasesthespeedandsophisticationofattacks,makingitdif?cultfordefensestostayaheadofattacks.

Themostpressingnon-adversaryLLMthreatformanyorganizationsstemfrom"ShadowAI":

employeesusingunapprovedonlineAItools,unsafebrowserplugins,andthird-partyapplicationsthatintroduceLLMfeaturesviaupdatesorupgrades,circumventingstandardsoftwareapprovalprocesses.

Figure2.1:Imageofoptionsfordeploymentstrategy

DeploymentStrategy

Thescopesrangefromleveragingpublicconsumerapplicationstotrainingproprietarymodelsonprivatedata.Factorslikeusecasesensitivity,capabilitiesneeded,andresourcesavailablehelpdeterminetherightbalanceofconveniencevs.control.However,understandingthese?vemodeltypesprovidesaframeworkforevaluatingoptions.

Figure2.2:Imageofoptionsfordeploymenttypes

Checklist

AdversarialRisk

AdversarialRiskincludescompetitorsandattackers.

□Scrutinizehowcompetitorsareinvestinginarti?cialintelligence.AlthoughtherearerisksinAIadoption,therearealsobusinessbene?tsthatmayimpactfuturemarketpositions.

□Investigatetheimpactofcurrentcontrols,suchaspasswordresets,whichusevoicerecognitionwhichmaynolongerprovidetheappropriatedefensivesecurityfromnewGenAIenhancedattacks.

□UpdatetheIncidentResponsePlanandplaybooksforGenAIenhancedattacksandAIMLspeci?cincidents.

ThreatModeling

Threatmodelingishighlyrecommendedtoidentifythreatsandexamineprocessesandsecuritydefenses.Threatmodelingisasetofsystematic,repeatableprocessesthatenablemakingreasonablesecuritydecisionsforapplications,software,andsystems.ThreatmodelingforGenAIacceleratedattacksandbeforedeployingLLMsisthemostcosteffectivewaytoIdentifyandmitigaterisks,protectdata,protectprivacy,andensureasecure,compliantintegrationwithinthebusiness.

□Howwillattackersaccelerateexploitattacksagainsttheorganization,employees,executives,orusers?Organizationsshouldanticipate"hyper-personalized"attacksatscaleusingGenerativeAI.LLM-assistedSpearPhishingattacksarenowexponentiallymoreeffective,targeted,andweaponizedforanattack.

□HowcouldGenAIbeusedforattacksonthebusiness’scustomersorclientsthroughspoo?ngorGenAIgeneratedcontent?

□CanthebusinessdetectandneutralizeharmfulormaliciousinputsorqueriestoLLMsolutions?

□CanthebusinesssafeguardconnectionswithexistingsystemsanddatabaseswithsecureintegrationsatallLLMtrustboundaries?

□Doesthebusinesshaveinsiderthreatmitigationtopreventmisusebyauthorizedusers?

□CanthebusinesspreventunauthorizedaccesstoproprietarymodelsordatatoprotectIntellectualProperty?

□Canthebusinesspreventthegenerationofharmfulorinappropriatecontentwithautomatedcontent?ltering?

AIAssetInventory

AnAIassetinventoryshouldapplytobothinternallydevelopedandexternalorthird-partysolutions.

□CatalogexistingAIservices,tools,andowners.Designateataginassetmanagementforspeci?cinventory.

□IncludeAIcomponentsintheSoftwareBillofMaterial(SBOM),acomprehensivelistofallthesoftwarecomponents,dependencies,andmetadataassociatedwithapplications.

□CatalogAIdatasourcesandthesensitivityofthedata(protected,con?dential,public)

□EstablishifpentestingorredteamingofdeployedAIsolutionsisrequiredtodeterminethecurrentattacksurfacerisk.

□CreateanAIsolutiononboardingprocess.

□EnsureskilledITadminstaffisavailableeitherinternallyorexternally,followingSBoMrequirements.

AISecurityandPrivacyTraining

□ActivelyengagewithemployeestounderstandandaddressconcernswithplannedLLMinitiatives.

□Establishacultureofopen,andtransparentcommunicationontheorganization’suseofpredictiveorgenerativeAIwithintheorganizationprocess,systems,employeemanagementandsupport,andcustomerengagementsandhowitsuseisgoverned,managed,andrisksaddressed.

□Trainallusersonethics,responsibility,andlegalissuessuchaswarranty,license,andcopyright.

□UpdatesecurityawarenesstrainingtoincludeGenAIrelatedthreats.Voicecloningandimage

cloning,aswellasinanticipationofincreasedspearphishingattacks

□AnyadoptedGenAIsolutionsshouldincludetrainingforbothDevOpsandcybersecurityforthedeploymentpipelinetoensureAIsafetyandsecurityassurances.

EstablishBusinessCases

SolidbusinesscasesareessentialtodeterminingthebusinessvalueofanyproposedAIsolution,balancingriskandbene?ts,andevaluatingandtestingreturnoninvestment.Thereareanenormousnumberofpotentialusecases;afewexamplesareprovided.

□Enhancecustomerexperience

□Betteroperationalef?ciency

□Betterknowledgemanagement

□Enhancedinnovation

□MarketResearchandCompetitorAnalysis

□Documentcreation,translation,summarization,andanalysis

Governance

CorporategovernanceinLLMisneededtoprovideorganizationswithtransparencyandaccountability.IdentifyingAIplatformorprocessownerswhoarepotentiallyfamiliarwiththetechnologyorthe

selectedusecasesforthebusinessisnotonlyadvisedbutalsonecessarytoensureadequate

reactionspeedthatpreventscollateraldamagestowellestablishedenterprisedigitalprocesses.

□Establishtheorganization’sAIRACIchart(whoisresponsible,whoisaccountable,whoshouldbeconsulted,andwhoshouldbeinformed)

□DocumentandassignAIrisk,riskassessments,andgovernanceresponsibilitywithintheorganization.

□Establishdatamanagementpolicies,includingtechnicalenforcement,regardingdataclassi?cationandusagelimitations.Modelsshouldonlyleveragedataclassi?edfortheminimumaccesslevelofanyuserofthesystem.Forexample,updatethedataprotectionpolicytoemphasizenottoinputprotectedorcon?dentialdataintononbusiness-managedtools.

□CreateanAIPolicysupportedbyestablishedpolicy(e.g.,standardofgoodconduct,dataprotection,softwareuse)

□PublishanacceptableusematrixforvariousgenerativeAItoolsforemployeestouse.

□DocumentthesourcesandmanagementofanydatathattheorganizationusesfromthegenerativeLLMmodels.

Legal

ManyofthelegalimplicationsofAIareunde?nedandpotentiallyverycostly.AnIT,security,andlegalpartnershipiscriticaltoidentifyinggapsandaddressingobscuredecisions.

□Con?rmproductwarrantiesareclearintheproductdevelopmentstreamtoassignwhoisresponsibleforproductwarrantieswithAI.

□ReviewandupdateexistingtermsandconditionsforanyGenAIconsiderations.

□ReviewAIEULAagreements.End-userlicenseagreementsforGenAIplatformsareverydifferentinhowtheyhandleuserprompts,outputrightsandownership,dataprivacy,compliance,liability,privacy,andlimitsonhowoutputcanbeused.

□OrganizationsEULAforcustomers,Modifyend-useragreementstopreventtheorganizationfromincurringliabilitiesrelatedtoplagiarism,biaspropagation,orintellectualpropertyinfringementthroughAI-generatedcontent.

□ReviewexistingAI-assistedtoolsusedforcodedevelopment.Achatbot’sabilitytowritecodecanthreatenacompany’sownershiprightstoitsproductifachatbotisusedtogeneratecodefortheproduct.Forexample,itcouldcallintoquestionthestatusandprotectionofthegeneratedcontentandwhoholdstherighttousethegeneratedcontent.

□Reviewanyriskstointellectualproperty.Intellectualpropertygeneratedbyachatbotcouldbeinjeopardyifimproperlyobtaineddatawasusedduringthegenerativeprocess,whichissubjecttocopyright,trademark,orpatentprotection.IfAIproductsuseinfringingmaterial,itcreatesariskfortheoutputsoftheAI,whichmayresultinintellectualpropertyinfringement.

□Reviewanycontractswithindemni?cationprovisions.Indemni?cationclausestrytoputtheresponsibilityforaneventthatleadstoliabilityonthepersonwhowasmoreatfaultforitorwhohadthebestchanceofstoppingit.EstablishguardrailstodeterminewhethertheprovideroftheAIoritsusercausedtheevent,givingrisetoliability.

□ReviewliabilityforpotentialinjuryandpropertydamagecausedbyAIsystems.

□Reviewinsurancecoverage.Traditional(D&O)liabilityandcommercialgeneralliabilityinsurancepoliciesarelikelyinsuf?cienttofullyprotectAIuse.

□Identifyanycopyrightissues.Humanauthorshipisrequiredforcopyright.Anorganizationmayalsobeliableforplagiarism,propagationofbias,orintellectualpropertyinfringementifLLMtoolsaremisused.

□EnsureagreementsareinplaceforcontractorsandappropriateuseofAIforanydevelopmentorprovidedservices.

□RestrictorprohibittheuseofgenerativeAItoolsforemployeesorcontractorswhereenforceablerightsmaybeanissueorwherethereareIPinfringementconcerns.

□AssessandAIsolutionsusedforemployeemanagementorhiringcouldresultindisparatetreatmentclaimsordisparateimpactclaims.

□MakesuretheAIsolutionsdonotcollectorsharesensitiveinformationwithoutproperconsentorauthorization.

Regulatory

TheEUAIActisanticipatedtobethe?rstcomprehensiveAIlawbutwillapplyin2025attheearliest.TheEU?GeneralDataProtectionRegulation(GDPR)doesnotspeci?callyaddressAIbutincludesrulesfordatacollection,datasecurity,fairnessandtransparency,accuracyandreliability,andaccountability,whichcanimpactGenAIuse.IntheUnitedStates,AIregulationisincludedwithinbroaderconsumerprivacylaws.TenUSstateshavepassedlawsorhavelawsthatwillgointoeffectbytheendof2023.

FederalorganizationssuchastheUSEqualEmploymentOpportunityCommission(EEOC),theConsumerFinancialProtectionBureau(CFPB),theFederalTradeCommission(FTC),andtheUSDepartmentofJustice?CivilRightsDivision(DOJ)arecloselymonitoringhiringfairness.

□DetermineCountry,State,orotherGovernmentspeci?cAIcompliancerequirements.

□Determinecompliancerequirementsforrestrictingelectronicmonitoringofemployeesandemployment-relatedautomateddecisionsystems(Vermont,California,Maryland,NewYork,NewJersey)

□DeterminecompliancerequirementsforconsentforfacialrecognitionandtheAIvideoanalysisrequired(Illinois,Maryland,Washington,Vermont)

□ReviewanyAItoolsinuseorbeingconsideredforemployeehiringormanagement.

□Con?rmthevendor?compliancewithapplicableAIlawsandbestpractices.

□AskanddocumentanyproductsusingAIduringthehiringprocess.Askhowthemodelwastrained,andhowitismonitored,andtrackanycorrectionsmadetoavoiddiscriminationandbias.

□Askanddocumentwhataccommodationoptionsareincluded.

□Askanddocumentwhetherthevendorcollectscon?dentialdata.

□Askhowthevendorortoolstoresanddeletesdataandregulatestheuseoffacialrecognitionandvideoanalysistoolsduringpre-employment.

□Reviewotherorganization-speci?cregulatoryrequirementswithAIthatmayraisecomplianceissues.TheEmployeeRetirementIncomeSecurityActof1974,forinstance,has?duciarydutyrequirementsforretirementplansthatachatbotmightnotbeabletomeet.

UsingorImplementingLargeLanguageModelSolutions

□ThreatModelLLMcomponentsandarchitecturetrustboundaries.

□DataSecurity,verifyhowdataisclassi?edandprotectedbasedonsensitivity,includingpersonalandproprietarybusinessdata.(Howareuserpermissionsmanaged,andwhatsafeguardsareinplace?)

□AccessControl,implementleastprivilegeaccesscontrolsandimplementdefense-in-depthmeasures

□TrainingPi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論