




已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
10 3 3排列組合綜合應(yīng)用 完成一件事 有n類辦法 在第1類辦法中有m1種不同的方法 在第2類辦法中有m2種不同的方法 在第n類辦法中有mn種不同的方法 那么完成這件事共有 種不同的方法 復(fù)習(xí)鞏固 1 分類計(jì)數(shù)原理 加法原理 完成一件事 需要分成n個(gè)步驟 做第1步有m1種不同的方法 做第2步有m2種不同的方法 做第n步有mn種不同的方法 那么完成這件事共有 種不同的方法 2 分步計(jì)數(shù)原理 乘法原理 分步計(jì)數(shù)原理各步相互依存 每步中的方法完成事件的一個(gè)階段 不能完成整個(gè)事件 3 分類計(jì)數(shù)原理分步計(jì)數(shù)原理區(qū)別 分類計(jì)數(shù)原理方法相互獨(dú)立 任何一種方法都可以獨(dú)立地完成這件事 排列問題常用方法 直接法和間接法 1 優(yōu)限法 特殊元素 位置 2 捆綁法 相鄰排列問題3 插空法 不相鄰排列問題4 消序法 解決排列組合綜合性問題的一般過程如下 1 認(rèn)真審題弄清要做什么事 2 怎樣做才能完成所要做的事 即采取分步還是分類 或是分步與分類同時(shí)進(jìn)行 確定分多少步及多少類 3 確定每一步或每一類是排列問題 有序 還是組合 無序 問題 元素總數(shù)是多少及取出多少個(gè)元素 解決排列組合綜合性問題 往往類與步交叉 因此必須掌握一些常用的解題策略 1 排列組合混合問題先選后排策略 例1 有5個(gè)不同的小球 裝入4個(gè)不同的盒內(nèi) 每盒至少裝一個(gè)球 共有多少不同的裝法 解 第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有 種方法 再把5個(gè)元素 包含一個(gè)復(fù)合元素 裝入4個(gè)不同的盒內(nèi)有 種方法 根據(jù)分步計(jì)數(shù)原理裝球的方法共有 解決排列組合混合問題 先選后排是最基本的指導(dǎo)思想 此法與相鄰元素捆綁策略相似嗎 練習(xí)題1 一個(gè)班有6名戰(zhàn)士 其中正副班長各1人現(xiàn)從中選4人完成四種不同的任務(wù) 每人完成一種任務(wù) 且正副班長有且只有1人參加 則不同的選法有 種 192 2 分組 分配問題策略 平均分成的組 不管它們的順序如何 都是一種情況 所以分組后要一定要除以 n為均分的組數(shù) 避免重復(fù)計(jì)數(shù) 例2 6本不同的書 按下列要求處理 分別有多少種分法 1 分三堆 一堆1本 一堆2本 一堆3本 2 分給甲 乙 丙3個(gè)人 甲1本 乙2本 丙3本 3 分給甲 乙 丙3個(gè)人 一人1本 一人2本 一人3本 4 分三堆 有兩堆各1本 另一堆4本 5 平均分成三組 6 平均分給甲 乙 丙3個(gè)人 1將13個(gè)球隊(duì)分成3組 一組5個(gè)隊(duì) 其它兩組4個(gè)隊(duì) 有多少分法 3 10名學(xué)生分成3組 其中一組4人 另兩組3人但正副班長不能分在同一組 有多少種不同的分組方法 1540 2 某校高二年級(jí)共有六個(gè)班級(jí) 現(xiàn)從外地轉(zhuǎn)入4名學(xué)生 要安排到該年級(jí)的兩個(gè)班級(jí)且每班安排2名 則不同的安排方案種數(shù)為 練習(xí)2 3 特殊元素和特殊位置優(yōu)先策略 例1 由0 1 2 3 4 5可以組成多少個(gè)沒有重復(fù)數(shù)字五位奇數(shù) 解 由于末位和首位有特殊要求 應(yīng)該優(yōu)先安排 以免不合要求的元素占了這兩個(gè)位置 先排末位共有 然后排首位共有 最后排其它位置共有 位置分析法和元素分析法是解決排列組合問題最常用也是最基本的方法 若以元素分析為主 需先安排特殊元素 再處理其它元素 若以位置分析為主 需先滿足特殊位置的要求 再處理其它位置 若有多個(gè)約束條件 往往是考慮一個(gè)約束條件的同時(shí)還要兼顧其它條件 7種不同的花種在排成一列的花盆里 若兩種葵花不種在中間 也不種在兩端的花盆里 問有多少不同的種法 練習(xí)題 4 元素相同問題隔板策略 例3 有10個(gè)運(yùn)動(dòng)員名額 在分給7個(gè)班 每班至少一個(gè) 有多少種分配方案 解 因?yàn)?0個(gè)名額沒有差別 把它們排成一排 相鄰名額之間形成 個(gè)空隙 在 個(gè)空檔中選 個(gè)位置插個(gè)隔板 可把名額分成 份 對(duì)應(yīng)地分給 個(gè)班級(jí) 每一種插板方法對(duì)應(yīng)一種分法共有 種分法 將n個(gè)相同的元素分成m份 n m為正整數(shù) 每份至少一個(gè)元素 可以用m 1塊隔板 插入n個(gè)元素排成一排的n 1個(gè)空隙中 所有分法數(shù)為 練習(xí)題 10個(gè)相同的球裝5個(gè)盒中 每盒至少一個(gè) 有多少裝法 5 相鄰元素捆綁策略 例2 7人站成一排 其中甲乙相鄰且丙丁相鄰 共有多少種不同的排法 解 可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素 同時(shí)丙丁也看成一個(gè)復(fù)合元素 再與其它元素進(jìn)行排列 同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排 要求某幾個(gè)元素必須排在一起的問題 可以用捆綁法來解決問題 即將需要相鄰的元素合并為一個(gè)元素 再與其它元素一起作排列 同時(shí)要注意合并元素內(nèi)部也必須排列 某人射擊8槍 命中4槍 4槍命中恰好有3槍連在一起的情形的不同種數(shù)為 練習(xí)題 20 6 不相鄰問題插空策略 例3 一個(gè)晚會(huì)的節(jié)目有4個(gè)舞蹈 2個(gè)相聲 3個(gè)獨(dú)唱 舞蹈節(jié)目不能連續(xù)出場 則節(jié)目的出場順序有多少種 解 分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有種 元素相離問題可先把沒有位置要求的元素進(jìn)行排隊(duì)再把不相鄰元素插入中間和兩端 某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單 開演前又增加了兩個(gè)新節(jié)目 如果將這兩個(gè)新節(jié)目插入原節(jié)目單中 且兩個(gè)新節(jié)目不相鄰 那么不同插法的種數(shù)為 30 練習(xí)題 7 合理分類與分步策略 例4 在一次演唱會(huì)上共10名演員 其中8人能唱歌 5人會(huì)跳舞 現(xiàn)要演出一個(gè)2人唱歌2人伴舞的節(jié)目 有多少選派方法 解 10演員中有5人只會(huì)唱歌 2人只會(huì)跳舞3人為全能演員 本題還有如下分類標(biāo)準(zhǔn) 以3個(gè)全能演員是否選上唱歌人員為標(biāo)準(zhǔn) 以3個(gè)全能演員是否選上跳舞人員為標(biāo)準(zhǔn) 以只會(huì)跳舞的2人是否選上跳舞人員為標(biāo)準(zhǔn)都可經(jīng)得到正確結(jié)果 解含有約束條件的排列組合問題 可按元素的性質(zhì)進(jìn)行分類 按事件發(fā)生的連續(xù)過程分步 做到標(biāo)準(zhǔn)明確 分步層次清楚 不重不漏 分類標(biāo)準(zhǔn)一旦確定要貫穿于解題過程的始終 1 從4名男生和3名女生中選出4人參加某個(gè)座談會(huì) 若這4人中必須既有男生又有女生 則不同的選法共有 34 練習(xí)題 2 3成人2小孩乘船游玩 1號(hào)船最多乘3人 2號(hào)船最多乘2人 3號(hào)船只能乘1人 他們?nèi)芜x2只船或3只船 但小孩不能單獨(dú)乘一只船 這3人共有多少乘船方法 27 8 重排問題求冪策略 例5 把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí) 共有多少種不同的分法 解 完成此事共分六步 把第一名實(shí)習(xí)生分配到車間有種分法 7 1 某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單 開演前又增加了兩個(gè)新節(jié)目 如果將這兩個(gè)節(jié)目插入原節(jié)目單中 那么不同插法的種數(shù)為 42 2 某8層大樓一樓電梯上來8名乘客人 他們到各自的一層下電梯 下電梯的方法 練習(xí)題 練習(xí)題 6顆顏色不同的鉆石 可穿成幾種鉆石圈 120 9 構(gòu)造模型策略 例5 馬路上有編號(hào)為1 2 3 4 5 6 7 8 9的九只路燈 現(xiàn)要關(guān)掉其中的3盞 但不能關(guān)掉相鄰的2盞或3盞 也不能關(guān)掉兩端的2盞 求滿足條件的關(guān)燈方法有多少種 解 把此問題當(dāng)作一個(gè)排隊(duì)模型在6盞亮燈的5個(gè)空隙中插入3個(gè)不亮的燈有 種 一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型 如占位填空模型 排隊(duì)模型 裝盒模型等 可使問題直觀解決 練習(xí)題 某排共有10個(gè)座位 若4人就坐 每人左右兩邊都有空位 那么不同的坐法有多少種 120 10 實(shí)際操作窮舉策略 例6 設(shè)有編號(hào)1 2 3 4 5的五個(gè)球和編號(hào)1 23 4 5的五個(gè)盒子 現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi) 要求每個(gè)盒子放一個(gè)球 并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同 有多少投法 解 從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有 種還剩下3球3盒序號(hào)不能對(duì)應(yīng) 10 實(shí)際操作窮舉策略 例6 設(shè)有編號(hào)1 2 3 4 5的五個(gè)球和編號(hào)1 23 4 5的五個(gè)盒子 現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi) 要求每個(gè)盒子放一個(gè)球 并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同 有多少投法 解 從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有 種還剩下3球3盒序號(hào)不能對(duì)應(yīng) 同理3號(hào)球裝5號(hào)盒時(shí) 4 5號(hào)球有也只有1種裝法 由分步計(jì)數(shù)原理有2種 對(duì)于條件比較復(fù)雜的排列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江機(jī)電職業(yè)技術(shù)學(xué)院《生物化學(xué)上》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年北京順義初三月考試卷(三)生物試題含解析
- 新疆兵團(tuán)八師一四三團(tuán)一中2025年第一次高考適應(yīng)性考試化學(xué)試題含解析
- 鄭州電子信息職業(yè)技術(shù)學(xué)院《文獻(xiàn)學(xué)專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 哈爾濱石油學(xué)院《針灸推拿與護(hù)理》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年安順市重點(diǎn)中學(xué)高中畢業(yè)年級(jí)第二次質(zhì)量預(yù)測生物試題含解析
- 山東電子職業(yè)技術(shù)學(xué)院《文學(xué)作品導(dǎo)讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州城市職業(yè)學(xué)院《計(jì)算機(jī)通信網(wǎng)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京警察學(xué)院《互聯(lián)網(wǎng)時(shí)代的企業(yè)戰(zhàn)略管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢信息傳播職業(yè)技術(shù)學(xué)院《舞蹈美學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)英語上冊(cè)用所給詞的適當(dāng)形式填空
- 室內(nèi)設(shè)計(jì)服務(wù)內(nèi)容及設(shè)計(jì)深度要求
- 安裝工程開工報(bào)告表格
- 全文解讀2022年新制訂《農(nóng)村集體經(jīng)濟(jì)組織財(cái)務(wù)制度》PPT課件
- 繪本《大大行我也行》PPT
- 設(shè)計(jì)輸入和參考現(xiàn)有平臺(tái)技術(shù)協(xié)議222m helideck proposal for gshi
- Duncans 新復(fù)極差檢驗(yàn)SSR值表
- 小學(xué)生A4日記本打印版(田字格+拼音格)(共1頁)
- 北京市教育委員會(huì)關(guān)于建立民辦學(xué)校辦學(xué)情況年度報(bào)告制度的通知
- 橋墩尺寸經(jīng)驗(yàn)值
- ICOM 2720中文說明書
評(píng)論
0/150
提交評(píng)論