最小二乘估計量_第1頁
最小二乘估計量_第2頁
最小二乘估計量_第3頁
最小二乘估計量_第4頁
最小二乘估計量_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、2.2 最小二乘估計量的性質(zhì),一、最小二乘估計量的性質(zhì) 二、參數(shù)估計量的概率分布及隨機干擾項方差的估計,一、最小二乘估計量的性質(zhì),當模型參數(shù)估計出后,需考慮參數(shù)估計值的精度,即是否能代表總體參數(shù)的真值,或者說需考察參數(shù)估計量的統(tǒng)計性質(zhì)。,一個用于考察總體的估計量,可從如下幾個方面考察其優(yōu)劣性: (1)線性性,即它是否是另一隨機變量的線性函數(shù); (2)無偏性,即它的均值或期望值是否等于總體的真實值; (3)有效性,即它是否在所有線性無偏估計量中具有最小方差。,(4)漸近無偏性,即樣本容量趨于無窮大時,是否它的均值序列趨于總體真值; (5)一致性,即樣本容量趨于無窮大時,它是否依概率收斂于總體的真

2、值; (6)漸近有效性,即樣本容量趨于無窮大時,是否它在所有的一致估計量中具有最小的漸近方差。,這三個準則也稱作估計量的小樣本性質(zhì)。 擁有這類性質(zhì)的估計量稱為最佳線性無偏估計量(best liner unbiased estimator, BLUE)。,當不滿足小樣本性質(zhì)時,需進一步考察估計量的大樣本或漸近性質(zhì):,高斯馬爾可夫定理(Gauss-Markov theorem) 在給定經(jīng)典線性回歸的假定下,最小二乘估計量是具有最小方差的線性無偏估計量。,證:,易知,故,同樣地,容易得出,(2)證明最小方差性,其中,ci=ki+di,di為不全為零的常數(shù) 則容易證明,普通最小二乘估計量(ordinary least Squares Estimators)稱為最佳線性無偏估計量(best linear unbiased estimator, BLUE),二、參數(shù)估計量的概率分布及隨機干擾項方差的估計,2、隨機誤差項的方差2的估計,由于隨機項i不可觀測,只能從i的估計殘差ei出發(fā)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論