下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、向量方法證明余弦定理一、 教學(xué)目標(biāo)解析1、使學(xué)生掌握余弦定理及推論,并會(huì)初步運(yùn)用余弦定理及推論解三角形。2、通過對(duì)三角形邊角關(guān)系的探究,能證明余弦定理,了解從三角方法、解析方法、向量方法和正弦定理等途徑證明余弦定理。3、在發(fā)現(xiàn)和證明余弦定理中,通過聯(lián)想、類比、轉(zhuǎn)化等思想方法比較證明余弦定理的不同方法,從而培養(yǎng)學(xué)生的發(fā)散思維。4、能用余弦定理解決生活中的實(shí)際問題,可以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)學(xué)是有用的。二、 教學(xué)問題診斷分析1、通過前一節(jié)正弦定理的學(xué)習(xí),學(xué)生已能解決這樣兩類解三角形的問題:已知三角形的任意兩個(gè)角與邊,求其他兩邊和另一角;已知三角形的任意兩個(gè)角與其中一邊的對(duì)角,
2、計(jì)算另一邊的對(duì)角,進(jìn)而計(jì)算出其他的邊和角。而在已知三角形兩邊和它們的夾角,計(jì)算出另一邊和另兩個(gè)角的問題上,學(xué)生產(chǎn)生了認(rèn)知沖突,這就迫切需要他們掌握三角形邊角關(guān)系的另一種定量關(guān)系。所以,教學(xué)的重點(diǎn)應(yīng)放在余弦定理的發(fā)現(xiàn)和證明上。2、在以往的教學(xué)中存在學(xué)生認(rèn)知比較單一,對(duì)余弦定理的證明方法思考也比較單一,而本節(jié)的教學(xué)難點(diǎn)就在于余弦定理的證明。如何啟發(fā)、引導(dǎo)學(xué)生經(jīng)過聯(lián)想、類比、轉(zhuǎn)化多角度地對(duì)余弦定理進(jìn)行證明,從而突破這一難點(diǎn)。3、學(xué)習(xí)了正弦定理和余弦定理,學(xué)生在解三角形中,如何適當(dāng)?shù)剡x擇定理以達(dá)到更有效地解題,也是本節(jié)內(nèi)容應(yīng)該關(guān)注的問題,特別是求某一個(gè)角有時(shí)既可以用余弦定理,也可以用正弦定理時(shí),教學(xué)中
3、應(yīng)注意讓學(xué)生能理解兩種方法的利弊之處,從而更有效地解題。三、 教學(xué)支持條件分析為了將學(xué)生從繁瑣的計(jì)算中解脫出來,將精力放在對(duì)定理的證明和運(yùn)用上,所以本節(jié)中復(fù)雜的計(jì)算借助計(jì)算器來完成。當(dāng)使用計(jì)算器時(shí),約定當(dāng)計(jì)算器所得的三角函數(shù)值是準(zhǔn)確數(shù)時(shí)用等號(hào),當(dāng)取其近似值時(shí),相應(yīng)的運(yùn)算采用約等號(hào)。但一般的代數(shù)運(yùn)算結(jié)果按通常的運(yùn)算規(guī)則,是近似值時(shí)用約等號(hào)。四、 教學(xué)過程設(shè)計(jì)1、教學(xué)基本流程:從一道生活中的實(shí)際問題的解決引入問題,如何用已知的兩條邊及其所夾的角來表示第三條邊。余弦定理的證明:啟發(fā)學(xué)生從不同的角度得到余弦定理的證明,或引導(dǎo)學(xué)生自己探索獲得定理的證明。應(yīng)用余弦定理解斜三角形。2、教學(xué)情景:創(chuàng)設(shè)情境,提
4、出問題問題1:現(xiàn)有卷尺和測(cè)角儀兩種工具,請(qǐng)你設(shè)計(jì)合理的方案,來測(cè)量學(xué)校河兩岸兩點(diǎn)的距離【 設(shè)計(jì)意圖】:來源于生活中的問題能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)習(xí)積極性。讓學(xué)生進(jìn)一步體會(huì)到數(shù)學(xué)來源于生活,數(shù)學(xué)服務(wù)于生活。師生活動(dòng):教師可以采取小組合作的形式,讓學(xué)生設(shè)計(jì)方案嘗試解決。求異探新,證明定理問題2:在abc中,c = 90,則用勾股定理就可以得到c2=a2+b2。【設(shè)計(jì)意圖】:引導(dǎo)學(xué)生從最簡單入手,從而通過添加輔助線構(gòu)造直角三角形。師生活動(dòng):引導(dǎo)學(xué)生從特殊入手,用已有的初中所學(xué)的平面幾何的有關(guān)知識(shí)來研究這一問題,從而尋找出這些量之間存在的某種定量關(guān)系。教師總結(jié):以上的證明都是把斜三角形轉(zhuǎn)化為兩個(gè)直
5、角三角形,化一般為特殊,再利用勾股定理來證明。并且進(jìn)一步指出以上的證明還不嚴(yán)密,還要分c為鈍角或直角時(shí),同樣都可以得出以上結(jié)論,這也正是本節(jié)課的重點(diǎn)余弦定理。【設(shè)計(jì)意圖】:首先肯定學(xué)生成果,進(jìn)一步的追問以上思路是否完整,可以使學(xué)生的思維更加嚴(yán)密。師生活動(dòng):得出了余弦定理,教師還應(yīng)引導(dǎo)學(xué)生聯(lián)想、類比、轉(zhuǎn)化,思考是否還有其他方法證明余弦定理。教師:在前面學(xué)習(xí)正弦定理的證明過程種,我們用向量法比較簡便地證明了正弦定理,那么在余弦定理的證明中,你會(huì)有什么想法?【設(shè)計(jì)意圖】:通過類比、聯(lián)想,讓學(xué)生的思維水平得到進(jìn)一步鍛煉和提高,體驗(yàn)到成功的樂趣。教師:以上的證明避免了討論c是銳角、鈍角或直角,思路簡潔明
6、了,過程簡單,體現(xiàn)了向量工具的作用。又向量可以用坐標(biāo)表示,ab長度又可以聯(lián)系到平面內(nèi)兩點(diǎn)間的距離公式,你會(huì)有什么啟發(fā)?【設(shè)計(jì)意圖】:由向量又聯(lián)想到坐標(biāo),引導(dǎo)學(xué)生從直角坐標(biāo)中用解析法證明定理。運(yùn)用定理,解決問題讓學(xué)生觀察余弦定理及推論的構(gòu)成形式,思考用余弦定理及推論可以解決那些類型的三角形問題。例1:在abc中,已知a = 2,b = 3,c = 60,求邊c。在abc中,已知a = 7,b = 3,c = 5,求a、b、c?!驹O(shè)計(jì)意圖】:讓學(xué)生理解余弦定理及推論解決兩類最基本問題,既已知三角形兩邊及夾角,求第三邊;已知三角形三邊,求三內(nèi)角。小結(jié)本節(jié)課的主要內(nèi)容是余弦定理的證明,從平面幾何、向量、坐標(biāo)等各個(gè)不同的方面進(jìn)行探究,得出的余弦定理無論在什么形狀的三角形中都成立,勾股定理也只不過是它的特例。所以它很“完美”,從式子上又可以看出其具“簡捷、和諧、對(duì)稱”的美,其變式即推論也很協(xié)調(diào)?!驹O(shè)計(jì)意圖】:在學(xué)生探究數(shù)學(xué)美,欣賞美的過程中,體會(huì)數(shù)學(xué)造化之神奇,學(xué)生可以興趣盎然地掌握公式特征、結(jié)構(gòu)及其他變式。作業(yè)第1題:用正弦定理證明余弦定理?!驹O(shè)計(jì)意圖】:繼續(xù)要求學(xué)生擴(kuò)寬思路,用正弦定理把余弦定理中的邊都轉(zhuǎn)化成角,然后利用三角公式進(jìn)行推導(dǎo)證明。而這種把邊轉(zhuǎn)化為角、或把角轉(zhuǎn)化為邊的思想正是我們解決三角形問題中的一種非常重要的思想方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 市場(chǎng)調(diào)研門頭租賃合同
- 污水處理工程勞務(wù)合同模板
- 創(chuàng)業(yè)學(xué)校租賃合同
- 花藝作品銷售顧問聘用協(xié)議
- 建筑工程施工合同:生態(tài)保護(hù)工程
- 花園租賃協(xié)議模板
- 燃?xì)馐袌?chǎng)規(guī)劃
- 氣排球教練員培訓(xùn)
- 智慧路燈解決方案
- 制造執(zhí)行系統(tǒng)操作與應(yīng)用課件 4-1-2生產(chǎn)信息監(jiān)控
- 汽車美容裝潢技術(shù)電子教案 2.2-汽車內(nèi)部清洗護(hù)理
- 2023年中國鐵塔招聘筆試真題
- 江蘇省蘇州市2024-2025學(xué)年高一上學(xué)期11月期中英語試題(無答案)
- DB11∕T 2103.4-2023 社會(huì)單位和重點(diǎn)場(chǎng)所消防安全管理規(guī)范 第4部分:大型商業(yè)綜合體
- 常規(guī)弱電系統(tǒng)施工單價(jià)表純勞務(wù)
- 上海市閔行區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期中語文試題
- 2024年代持法人報(bào)酬協(xié)議書模板范本
- 2024年貴州貴陽市信訪局招聘歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024年人教版六年級(jí)數(shù)學(xué)上冊(cè)《第5單元第7課時(shí) 扇形的認(rèn)識(shí)》單元整體教學(xué)課件
- 《算法設(shè)計(jì)與分析基礎(chǔ)》(Python語言描述) 課件 第2章 常用的數(shù)據(jù)結(jié)構(gòu)及其應(yīng)用
- 2023湖南文藝出版社五年級(jí)音樂下冊(cè)全冊(cè)教案
評(píng)論
0/150
提交評(píng)論