大學(xué)物理(上)知識(shí)點(diǎn)整理_第1頁(yè)
大學(xué)物理(上)知識(shí)點(diǎn)整理_第2頁(yè)
大學(xué)物理(上)知識(shí)點(diǎn)整理_第3頁(yè)
大學(xué)物理(上)知識(shí)點(diǎn)整理_第4頁(yè)
大學(xué)物理(上)知識(shí)點(diǎn)整理_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第2章 質(zhì)點(diǎn)動(dòng)力學(xué) 一、質(zhì)點(diǎn):是物體的理想模型。它只有質(zhì)量而沒(méi)有大小。平動(dòng)物體可作為質(zhì)點(diǎn)運(yùn)動(dòng)來(lái)處理,或物體的形狀大小對(duì)物體運(yùn)動(dòng)狀態(tài)的影響可忽略不計(jì)是也可近似為質(zhì)點(diǎn)。二、力:是物體間的相互作用。分為接觸作用與場(chǎng)作用。在經(jīng)典力學(xué)中,場(chǎng)作用主要為萬(wàn)有引力(重力),接觸作用主要為彈性力與摩擦力。1、彈性力:   (為形變量)2、摩擦力:摩擦力的方向永遠(yuǎn)與相對(duì)運(yùn)動(dòng)方向(或趨勢(shì))相反。   固體間的靜摩擦力:    (最大值)   固體間的滑動(dòng)摩擦力:3、流體阻力:  或  。4、萬(wàn)有引力:

2、60;  特例:在地球引力場(chǎng)中,在地球表面附近:。         式中R為地球半徑,M為地球質(zhì)量。   在地球上方(較大),。   在地球內(nèi)部(),。三、慣性參考系中的力學(xué)規(guī)律  牛頓三定律牛頓第一定律:時(shí),。牛頓第一定律闡明了慣性與力的概念,定義了慣性系。牛頓第二定律:普遍形式:;經(jīng)典形式:   (為恒量)牛頓第三定律:。牛頓運(yùn)動(dòng)定律是物體低速運(yùn)動(dòng)()時(shí)所遵循的動(dòng)力學(xué)基本規(guī)律,是經(jīng)典力學(xué)的基礎(chǔ)。四、非慣性參考系中的力學(xué)規(guī)律1、慣性力

3、:慣性力沒(méi)有施力物體,因此它也不存在反作用力。但慣性力同樣能改變物體相對(duì)于參考系的運(yùn)動(dòng)狀態(tài),這體現(xiàn)了慣性力就是參考系的加速度效應(yīng)。2、引入慣性力后,非慣性系中力學(xué)規(guī)律:五、求解動(dòng)力學(xué)問(wèn)題的主要步驟恒力作用下的連接體約束運(yùn)動(dòng):選取研究對(duì)象,分析運(yùn)動(dòng)趨勢(shì),畫(huà)出隔離體示力圖,列出分量式的運(yùn)動(dòng)方程。變力作用下的單質(zhì)點(diǎn)運(yùn)動(dòng):分析力函數(shù),選取坐標(biāo)系,列運(yùn)動(dòng)方程,用積分法求解。第3章 機(jī)械能和功 一、功1、功能的定義式:恒力的功:變力的功:2、保守力若某力所作的功僅取決于始末位置而與經(jīng)歷的路徑無(wú)關(guān),則該力稱保守力。或滿足下述關(guān)系的力稱保守力:     

4、60;  3、幾種常見(jiàn)的保守力的功:(1)重力的功:(2)萬(wàn)有引力的功:(3)彈性力的功:4、功率   二、勢(shì)能保守力的功只取決于相對(duì)位置的改變而與路徑無(wú)關(guān)。由相對(duì)位置決定系統(tǒng)所具有的能量稱之為勢(shì)能。1、常見(jiàn)的勢(shì)能有(1)重力勢(shì)能  (2)萬(wàn)有引力勢(shì)能  (3)彈性勢(shì)能  2、勢(shì)能與保守力的關(guān)系(1)保守力的功等于勢(shì)能的減少  (2)保守力為勢(shì)能函數(shù)的梯度負(fù)值。  (3)勢(shì)能曲線    勢(shì)能曲線能很直觀地表述一維運(yùn)動(dòng)的主要特征,如運(yùn)動(dòng)范圍,平衡位置,保守力隨位置的變化情況,動(dòng)能與勢(shì)能的

5、相互轉(zhuǎn)換等。三、動(dòng)能定理、功能原理、機(jī)械能守恒定律    功可分為:外力的功、保守內(nèi)力的功、和非保守內(nèi)力的功1、  質(zhì)點(diǎn)動(dòng)能定理:2、質(zhì)點(diǎn)系動(dòng)能定理:3、功能原理:4、機(jī)械能守恒定律:,時(shí),第4章  動(dòng)量和角動(dòng)量 一、動(dòng)量定理1、動(dòng)量和均為描述機(jī)械運(yùn)動(dòng)的狀態(tài)量,但兩者有重要區(qū)別:是物體之間傳遞機(jī)械運(yùn)動(dòng)的量度;是物體的機(jī)械運(yùn)動(dòng)形式與其他運(yùn)動(dòng)形式相互轉(zhuǎn)換的一種量度。2、沖量:沖量是力對(duì)時(shí)間的累積,導(dǎo)致機(jī)械運(yùn)動(dòng)的傳遞。    3、動(dòng)量定理:質(zhì)點(diǎn):。質(zhì)點(diǎn)系:二、動(dòng)量守恒定律矢量式:;   分量式:利用某

6、一方向上的動(dòng)量守恒分量式常可簡(jiǎn)捷地解決力學(xué)問(wèn)題。三、碰撞問(wèn)題滿足動(dòng)量守恒定律:滿足牛頓規(guī)則(沿碰撞方向);?;謴?fù)系數(shù)  四、火箭飛行問(wèn)題箭體運(yùn)動(dòng)方程:?;鸺w行速度:五、質(zhì)心:質(zhì)心是質(zhì)點(diǎn)系中運(yùn)動(dòng)特別簡(jiǎn)單,能代表質(zhì)點(diǎn)系整體運(yùn)動(dòng)的特殊點(diǎn)。1、質(zhì)心位置   或  。2、質(zhì)點(diǎn)系動(dòng)量 3、質(zhì)心運(yùn)動(dòng)定理  六、質(zhì)點(diǎn)角動(dòng)量及其規(guī)律1、角動(dòng)量: 角動(dòng)量是與各質(zhì)點(diǎn)動(dòng)量和參考點(diǎn)位置有關(guān)的狀態(tài)量。(1)質(zhì)點(diǎn):。(2)質(zhì)點(diǎn)系:2、角動(dòng)量規(guī)律(1)轉(zhuǎn)動(dòng)動(dòng)力學(xué)方程:。(2)角動(dòng)量定理:(3)角動(dòng)量守恒定律:。第5章  剛體力學(xué)基礎(chǔ) 一、剛體定

7、軸轉(zhuǎn)動(dòng)的運(yùn)動(dòng)學(xué)描述    角位移,角速度,角加速度    在勻變速轉(zhuǎn)動(dòng)條件下,即角加速度為常數(shù)時(shí)有:    ;      ;      角速度是矢量,在定軸轉(zhuǎn)動(dòng)中其方向沿著軸向,它與剛體中r處點(diǎn)的線速度的矢量關(guān)系:角速度是矢量,在定軸轉(zhuǎn)動(dòng)中其方向沿著軸向,它與剛體中r處點(diǎn)的線加速度關(guān)系:其中:為切向加速度:為法向加速度。二、轉(zhuǎn)動(dòng)定律1、力矩  力矩一般說(shuō)來(lái)是一空間矢量,在定軸轉(zhuǎn)動(dòng)中,角速度方向已經(jīng)

8、確定,沿轉(zhuǎn)動(dòng)軸方向,剛體轉(zhuǎn)動(dòng)狀態(tài)的改變只與力矩在這一方向上的分量有關(guān)。在定軸轉(zhuǎn)動(dòng)中,力矩可簡(jiǎn)化為代數(shù)量。其量值:2、轉(zhuǎn)動(dòng)慣量  J轉(zhuǎn)動(dòng)慣量是表示物體轉(zhuǎn)動(dòng)慣性的物理量,它與物體的質(zhì)量大小、質(zhì)量的分布及轉(zhuǎn)軸位置都有關(guān)系,是轉(zhuǎn)動(dòng)問(wèn)題中的一個(gè)重要的物理量:(1)定義式:不連續(xù)分布的質(zhì)點(diǎn)系:    質(zhì)量連續(xù)分布的物體:    (2)平行軸定理:任意物體繞某固定軸O的轉(zhuǎn)動(dòng)慣量為,繞通過(guò)質(zhì)心C而平行于固定軸O的轉(zhuǎn)動(dòng)慣量為,O軸與C軸間距為d,轉(zhuǎn)動(dòng)物體的總質(zhì)量為m,那么:(3)垂直軸定理:    在平面上,有一

9、薄形板,薄板饒軸的轉(zhuǎn)動(dòng)慣量為,薄板饒軸的轉(zhuǎn)動(dòng)慣量為,那么,薄板饒通過(guò)軸的交點(diǎn)O垂直于平面的軸的轉(zhuǎn)動(dòng)慣量:。轉(zhuǎn)動(dòng)慣量除上述的計(jì)算方法,對(duì)于勻質(zhì)簡(jiǎn)單形狀的幾何體可查表查得它的轉(zhuǎn)動(dòng)慣量,對(duì)于非勻質(zhì)或不規(guī)則的物體我們可以經(jīng)過(guò)實(shí)驗(yàn)方法來(lái)測(cè)定。3、轉(zhuǎn)動(dòng)定律:一般形式為:在剛體定軸轉(zhuǎn)動(dòng)中:轉(zhuǎn)動(dòng)定律是轉(zhuǎn)動(dòng)問(wèn)題中的基本規(guī)律,它的地位與質(zhì)點(diǎn)動(dòng)力學(xué)牛頓第二定律相當(dāng)。用轉(zhuǎn)動(dòng)定律的解題步驟也與牛頓第二定律類同。仍為分析研究對(duì)象,畫(huà)出隔離體受力圖,選取合適坐標(biāo),列出相應(yīng)方程,和求解討論。因注意到、相對(duì)同一軸而言,是個(gè)代數(shù)式。三、角動(dòng)量原理1、剛體定軸轉(zhuǎn)動(dòng)角動(dòng)量:  2、角動(dòng)量原理:一般形式:  剛體定

10、軸轉(zhuǎn)動(dòng): 3、角動(dòng)量守恒定律:系統(tǒng)(質(zhì)點(diǎn)系或物體組)受到的合外矩為零,則系統(tǒng)的角動(dòng)量守恒。        恒矢量物體組繞z軸做定軸轉(zhuǎn)動(dòng)時(shí):       恒量應(yīng)用角動(dòng)量守恒定律時(shí)應(yīng)注意:(1)合外力矩為零的條件而不是合外力為零的條件(2)適用于慣性參照系(或質(zhì)心參照系),對(duì)同一轉(zhuǎn)軸而言(3)適用于剛體也適用于非剛體(4)適用于宏觀也適用于微觀四、轉(zhuǎn)動(dòng)中的功能關(guān)系1、力矩的功: 2、剛體的轉(zhuǎn)動(dòng)動(dòng)能: 3、功能定理:式中是指內(nèi)力、外力、內(nèi)力矩、外力矩的總功,而動(dòng)能和是質(zhì)心

11、的平動(dòng)動(dòng)能與剛體或非剛體繞質(zhì)心轉(zhuǎn)動(dòng)動(dòng)能的總和。4、機(jī)械能守恒非保守內(nèi)力、內(nèi)力矩、非保守外力和外力矩不作功時(shí)系統(tǒng)的總機(jī)能保持不變。       恒量五、剛體的平面運(yùn)動(dòng)剛體中某一平面,被限制在一固定平面內(nèi)運(yùn)動(dòng),有三個(gè)自由度,處理剛體平面運(yùn)動(dòng)有如下的方法:方法一,剛體平面運(yùn)動(dòng)可以分解為以質(zhì)心運(yùn)動(dòng)為代表的平動(dòng)和繞過(guò)質(zhì)心的垂直軸的轉(zhuǎn)動(dòng)。質(zhì)心運(yùn)動(dòng)服從質(zhì)心運(yùn)動(dòng)規(guī)律。        繞質(zhì)心軸轉(zhuǎn)動(dòng)服從質(zhì)心系轉(zhuǎn)動(dòng)定律和動(dòng)能定理      

12、;  方法二,剛體平面運(yùn)動(dòng)可視為饒瞬時(shí)轉(zhuǎn)軸P作純轉(zhuǎn)動(dòng)。對(duì)瞬軸的動(dòng)能定理;    式中但對(duì)瞬軸的轉(zhuǎn)動(dòng)定律,只有在是個(gè)常數(shù)的條件下才能成立,例如圓柱體和球作純滾動(dòng)時(shí),則對(duì)瞬時(shí)軸的轉(zhuǎn)動(dòng)定律才成立。   六、剛體的進(jìn)動(dòng)進(jìn)動(dòng)是剛體的一種非定點(diǎn)運(yùn)動(dòng),繞自轉(zhuǎn)軸轉(zhuǎn)動(dòng)的回轉(zhuǎn)儀在重力矩作用下,非但不會(huì)傾倒;而且自轉(zhuǎn)軸還會(huì)旋轉(zhuǎn)。1、回轉(zhuǎn)儀進(jìn)動(dòng)的物理實(shí)質(zhì)(在轉(zhuǎn)動(dòng)參照系中觀察)重力矩作用使回轉(zhuǎn)儀傾倒;回轉(zhuǎn)儀傾倒而產(chǎn)生垂直于自轉(zhuǎn)軸的慣性力矩,使回轉(zhuǎn)儀進(jìn)動(dòng);回轉(zhuǎn)儀進(jìn)動(dòng)又產(chǎn)生與重力矩平衡的慣性力矩,使回轉(zhuǎn)儀不再傾倒,繼續(xù)進(jìn)動(dòng)。2、回轉(zhuǎn)儀進(jìn)動(dòng)方向的規(guī)則回轉(zhuǎn)儀的進(jìn)動(dòng)使其

13、自轉(zhuǎn)角速度的指向,具有向外加力矩指向靠攏的趨勢(shì)。  3、回轉(zhuǎn)儀進(jìn)動(dòng)角速度:  對(duì)于給定剛體,進(jìn)動(dòng)角速度的大小,與外加力矩成正比,與剛體自轉(zhuǎn)角速度成反比。第6章  振動(dòng)力學(xué)基礎(chǔ) 一、產(chǎn)生諧振動(dòng)的動(dòng)力學(xué)條件物體受到的合外力或合外力矩為零的位置,我們稱之為平衡位置。當(dāng)物體偏離平衡位置時(shí),物體受到與位移成正比與位移方向相反的恢復(fù)力(),或受到與角位移成正比與角位移方向相反的恢復(fù)力矩()作用時(shí)物體將作諧振動(dòng)。1、彈簧振子(圖6-1)   這微分方程的解為:式中圓頻率由此可得振動(dòng)周期2、復(fù)擺(物理擺)式中b為支點(diǎn)到質(zhì)心的距離,也常用表示。這微分方程的解為:

14、式中圓頻率,由此可得振動(dòng)周期3、其他類型簡(jiǎn)諧振動(dòng)的一般求解步驟:(1)選取合適的坐標(biāo),找出平衡位置。(2)寫(xiě)出在平衡位置處物體所受各力的平衡條件,(在此較簡(jiǎn)單的情況下這一步可省略)。(3)給一微擾使物體偏離平衡位置,畫(huà)出物體的受力圖,找出回復(fù)力或回復(fù)力矩的表達(dá)式。(4)列出動(dòng)力學(xué)微分方程,與標(biāo)準(zhǔn)諧振動(dòng)微分方程比較系數(shù),可得諧振動(dòng)的圓頻率和周期。二、諧振動(dòng)的運(yùn)動(dòng)學(xué)描述有三種形式:1、解析式諧振動(dòng)的運(yùn)動(dòng)方程為將此式分別對(duì)時(shí)間求一次,二次導(dǎo)數(shù)可相應(yīng)得到振子的速度和加速度a隨時(shí)間的函數(shù)表達(dá)式:         &

15、#160;                    事實(shí)上速度和加速度a還應(yīng)是位移x的函數(shù):                  ,    在運(yùn)動(dòng)方程中圓頻率或周期T是由力學(xué)條件所確定的,而振幅A和初相位是由初始條件所確定的

16、。將代入位移和速度的表達(dá)式可得:  由此可解出:,  2、用旋轉(zhuǎn)矢量(即參考圓)描述旋轉(zhuǎn)矢量,以勻角速逆時(shí)針旋轉(zhuǎn),矢端M點(diǎn)在X軸上的投影P點(diǎn)的運(yùn)動(dòng)方程:卻好是諧振動(dòng)方程,且M點(diǎn)勻速圓周運(yùn)動(dòng)的速度和加速度在X軸上的投影和也卻好是P點(diǎn)在X軸上作諧振動(dòng)的速度和加速度。所以用參考圓來(lái)描述諧振動(dòng)比較簡(jiǎn)單直觀,容易記憶(如圖6-3所示)。3、用諧動(dòng)圖線描述諧振動(dòng)的位移、速度和加速度隨時(shí)間變化的曲線如圖 4 所示。一般要求看懂位移x和速度和加速度三條曲線的相位關(guān)系依次超前。三、諧振動(dòng)的能量彈性勢(shì)能:  動(dòng)能:彈簧振子系統(tǒng)的總能量:四、諧振動(dòng)的合成1、同方向同頻率兩個(gè)諧振動(dòng)的合成

17、設(shè)諧振動(dòng)            合成后的諧振動(dòng)          式中:; 此關(guān)系式用旋轉(zhuǎn)矢量圖6-5則很容易理解和記憶。當(dāng):        則         則   2、同方向頻率相近的諧振動(dòng)合成合成后的圓頻率為其平均圓頻率或其頻率,合成后產(chǎn)生的

18、拍頻  。3、互相垂直的諧振動(dòng)合成兩個(gè)相互垂直的同頻率諧振動(dòng)合成的質(zhì)點(diǎn)運(yùn)動(dòng)軌跡一般為橢圓,在一定條件下也可能為圓或直線。軌跡的形狀決定于兩振動(dòng)的相位差與振幅,當(dāng)兩個(gè)諧振動(dòng)頻率不相等,但有簡(jiǎn)單的整數(shù)比時(shí),質(zhì)點(diǎn)的運(yùn)動(dòng)軌跡為李薩如圖形。五、阻尼振動(dòng)當(dāng)彈簧振子在振動(dòng)過(guò)程中受到的阻力與速度大小成正比與速度方向相反的阻力作用時(shí),振子的動(dòng)力學(xué)方程為: 式中為阻尼系數(shù)。若令,則上式可改寫(xiě)為:    在小阻尼情況下,即的條件下其微分方程的解為:,其中  ;可得周期  在大阻尼情況下(即)就不再是周期運(yùn)動(dòng)了。六、有阻尼的受迫振動(dòng)有阻尼的受迫振動(dòng)的動(dòng)力學(xué)方

19、程為:式中H為強(qiáng)迫力的最大值,p為強(qiáng)迫力的圓頻率。若令;上式可寫(xiě)為:該微分方程的解為:前項(xiàng)就是阻尼振動(dòng),隨時(shí)間的增加而很快消失,后項(xiàng)是穩(wěn)定的振動(dòng),其中振幅B由下式表示:由此式可知當(dāng)強(qiáng)迫力頻率與固有頻率相差很大時(shí)強(qiáng)迫振動(dòng)振幅就很小,而強(qiáng)迫力頻率和固有頻率接近時(shí),強(qiáng)迫振動(dòng)的振幅就很大,這種情況稱之謂共振。第7章  狹義相對(duì)論基礎(chǔ) 一、狹義相對(duì)論基本假設(shè)1、狹義相對(duì)性原理:物理定律對(duì)一切慣性系等價(jià)。2、光速不變?cè)恚赫婵罩泄馑倥c光源或觀察者的運(yùn)動(dòng)無(wú)關(guān)。二、時(shí)空相對(duì)性1、動(dòng)鐘變慢效應(yīng):2、動(dòng)尺縮短效應(yīng):三、相對(duì)論運(yùn)動(dòng)學(xué)1、洛侖茲坐標(biāo)變換式:;。2、愛(ài)因斯坦速度變換式:;。四、相對(duì)論動(dòng)力學(xué)1、

20、相對(duì)論質(zhì)量:2、相對(duì)論動(dòng)量:3、相對(duì)論動(dòng)力學(xué)方程:五、相對(duì)論能量1、相對(duì)論能量:2、相對(duì)論動(dòng)能:3、相對(duì)論靜能:六、相對(duì)論能量與動(dòng)量關(guān)系第8章  熱力學(xué)平衡態(tài) 一、理想氣體狀態(tài)方程1、平衡態(tài)的概念系統(tǒng)與外界沒(méi)有能量交換,系統(tǒng)內(nèi)部也沒(méi)有任何形式的能量轉(zhuǎn)換,氣體各部分具有相同的溫度和壓力,而且溫度和壓力也不隨時(shí)間而變化的這種狀態(tài)叫平衡態(tài)。2、理想氣體的狀態(tài)方程這狀態(tài)方程只適用于平衡態(tài)。式中理想氣體普適常數(shù):3、壓力與單位體積內(nèi)分子數(shù)與溫度的關(guān)系:          式中,表示單位體積內(nèi)的分子數(shù),&#

21、160;   ,稱為玻爾茲曼常數(shù)。(式中,為阿伏枷德羅常數(shù))二、氣體分子運(yùn)動(dòng)論1、宏觀量與微觀量氣體的溫度、壓力是大量分子熱運(yùn)動(dòng)的集體表現(xiàn),這些描述大量分子集體特征的物理量叫做宏觀量。組成氣體的每一分子具有一定的質(zhì)量、體積、速度、能量等,這些描述單個(gè)分子的物理量叫做微觀量。氣體分子運(yùn)動(dòng)論就是根據(jù)理想氣體分子模型用統(tǒng)計(jì)的方法研究氣體的宏觀現(xiàn)象的微觀本質(zhì),建立宏觀量與微觀量的平均值之間關(guān)系的理論。2、理想氣體的微觀模型。(一)力學(xué)假設(shè):    (1)氣體分子的線度遠(yuǎn)小于分子間距。    (2)氣體分子可看作為彈性小球,

22、它的運(yùn)動(dòng)規(guī)律遵守牛頓運(yùn)動(dòng)定律。    (3)除碰撞瞬間外,分子間相互作用力可忽略不計(jì)。(二)平衡態(tài)時(shí)的統(tǒng)計(jì)假設(shè):    (1)分子向各個(gè)方向運(yùn)動(dòng)的機(jī)會(huì)均等。    (2)分子速度在各個(gè)方向上分量的各種平均值也相等。             有   3、理想氣體的壓力公式         4

23、、氣體分子的平均平動(dòng)動(dòng)能與溫度的關(guān)系       它揭示了宏觀量溫度是氣體分子無(wú)規(guī)則運(yùn)動(dòng)量度的物理本質(zhì)。5、能量均分原理任一自由度上的平均能量都是,這叫能量均分原理。表示平動(dòng)自由度,表示其轉(zhuǎn)動(dòng)自由度,S表示其振動(dòng)自由度,分子的總自由度:       (1)單原子分子:         (2)在溫度不太高的條件下,雙原子分子可看成剛性分子,振動(dòng)自由度S取零得:   &#

24、160; 剛性雙原子分子            (3)剛性多原子分子            6、理想氣體的內(nèi)能       理想氣體的內(nèi)能是系統(tǒng)狀態(tài)的單值函數(shù)。三、麥克斯韋速率分布1、麥克斯韋速率分布函數(shù)的意義         表示單位速率區(qū)間內(nèi)的分

25、子數(shù)占總分子數(shù)的比率。2、麥克斯韋速率分布函數(shù)         它滿足歸一化條件      3、三個(gè)統(tǒng)計(jì)速率(1)最可幾速率:時(shí)       (2)平均速率:       (3)均方根速率      4、麥克斯韋速率分布曲線主要特點(diǎn):(1)曲線與速度軸所包圍的面積為1。(2)最可幾速率附近的分子數(shù)比率最大,速

26、率很大或很小的分子數(shù)比率都很少。(3)溫度升高曲線右移,曲線比較平坦;溫度降低曲線左移,曲線比較陡。(4)同溫度下分子量較大的氣體分子的速率分布曲線在分子量較小的速率分布曲線的左邊。四、麥克斯韋速度分布在速度區(qū)間到,到,到內(nèi)的總分子數(shù)占總分子數(shù)的比率:                  分子對(duì)器壁單位面積上碰撞的頻率:           

27、;  五、玻耳茲曼統(tǒng)計(jì)分布      式中稱為玻耳茲曼因子,其中和表示分子動(dòng)能和分子在外場(chǎng)中的勢(shì)能。重力場(chǎng)中粒子按高度分布:             第9章  熱力學(xué)定律 一、熱力學(xué)第一定律1、熱力學(xué)第一定律:熱力學(xué)第一定律是包括熱現(xiàn)象在內(nèi)的能量守恒和轉(zhuǎn)換定律。它的數(shù)學(xué)表達(dá)式為:           

28、;         (微分形式)                  (積分形式)熱力學(xué)第一定律表明了:系統(tǒng)吸收的熱量一部分使系統(tǒng)的內(nèi)能增加,另一部分使系統(tǒng)對(duì)外作功。應(yīng)用熱力學(xué)第一定律時(shí)必須要注意各物理量的正負(fù)號(hào)。系統(tǒng)吸熱取“+”號(hào),放熱取“-”號(hào)。系統(tǒng)對(duì)外作功取“+”號(hào),外界對(duì)系統(tǒng)作功取“-”號(hào)。2、熱力學(xué)第一定律在理想氣體等值過(guò)程中應(yīng)用

29、的比較表:過(guò)程過(guò)程方程吸收熱量Q內(nèi)能增量對(duì)外作功A摩爾熱容C等容0等壓或等溫或0或絕熱0或0多方或這“比較表”的主要特點(diǎn):(1)內(nèi)能E是系統(tǒng)狀態(tài)(溫度)的單值函數(shù)          內(nèi)能是個(gè)狀態(tài)量。內(nèi)能的增量只決定于初末兩個(gè)狀態(tài),與所經(jīng)歷的過(guò)程無(wú)關(guān)。所以表中內(nèi)能增量的表達(dá)式都是:       (2)功A是通過(guò)宏觀位移來(lái)傳遞能量的過(guò)程量。所以表中功的表達(dá)式因過(guò)程不同而不同,但功都可從功的定義求得,即:    

30、        (3)熱量Q是通過(guò)分子間相互作用來(lái)傳遞能量的過(guò)程量。表中Q都可由熱力學(xué)第一定律來(lái)求得:                   或者:       式中C為摩爾熱容量。由于Q是過(guò)程量,因此式中C要與具體的過(guò)程量相對(duì)應(yīng)。(4)摩爾熱容:     定容摩爾熱容:

31、;定壓摩爾熱容:;     比熱容比:     摩爾熱容C為常量的過(guò)程為多方過(guò)程。在多方過(guò)程中:                    可見(jiàn),當(dāng)n=0時(shí)為等壓過(guò)程,n=1時(shí)為等溫過(guò)程           當(dāng)n=時(shí)為絕熱過(guò)程,時(shí)為等容過(guò)程二、

32、循環(huán)過(guò)程1、循環(huán)過(guò)程的特點(diǎn):(1)每經(jīng)歷一個(gè)循環(huán),系統(tǒng)內(nèi)能沒(méi)有改變;(2)每一循環(huán)所作的功在數(shù)值上等于圖封閉曲線所包圍的面積。(3)熱循環(huán)的效率:                式中表示系統(tǒng)所吸收的熱量,表示系統(tǒng)所放出的熱量。2、卡諾循環(huán)(1)卡諾循環(huán)由兩絕熱過(guò)程和兩等溫過(guò)程組成(2)卡諾循環(huán)的效率          (3)卡諾循環(huán)的意義指出了所有熱機(jī)的效率都小于1,

33、提高熱機(jī)效率的有效途徑是提高高溫?zé)嵩吹臏囟???ㄖZ循環(huán)為確立熱力學(xué)第二定律奠定了基礎(chǔ)。3、致冷循環(huán)(1)與熱機(jī)相反方向的循環(huán)為致冷循環(huán)。P-V圖上逆時(shí)針循環(huán)所包圍曲線的面積為外界所作的功A。(2)致冷系數(shù):                  對(duì)卡諾致冷機(jī)而言:             (3)要從低溫?zé)嵩次崃肯蚋邷責(zé)嵩?/p>

34、送,外界必須要消耗功為代價(jià),對(duì)卡諾致冷機(jī)而言,外界所需作的功:             (4)供熱系數(shù):             三、熱力學(xué)第二定律:1、可逆過(guò)程與不可逆過(guò)程某一過(guò)程P中一物體從狀態(tài)A變?yōu)闋顟B(tài)B,如果我們能使?fàn)顟B(tài)逆向變化。從狀態(tài)B回到初態(tài)A時(shí),周?chē)磺幸捕几髯曰貜?fù)原狀。過(guò)程P就稱為可逆過(guò)程。如果物體不能回復(fù)至原狀態(tài)A,或當(dāng)物體回復(fù)到原狀態(tài)A時(shí)

35、而周?chē)⒉荒芑貜?fù)原狀。那么過(guò)程P稱為不可逆過(guò)程。滿足機(jī)械能守恒的純力學(xué)過(guò)程是可逆過(guò)程。熱力學(xué)過(guò)程中準(zhǔn)靜態(tài)變化過(guò)程也是可逆過(guò)程。只有理想過(guò)程才能是可逆過(guò)程。一切實(shí)際過(guò)程都是不可逆過(guò)程。熱力學(xué)中從非平衡狀態(tài)到平衡態(tài)(如熱傳導(dǎo)、擴(kuò)散、氣體自由膨脹等)都是不可逆過(guò)程。機(jī)械運(yùn)動(dòng)轉(zhuǎn)化為熱運(yùn)動(dòng)也是不可逆過(guò)程。 2、卡諾定理(1)在相同高溫?zé)嵩矗囟葹椋┡c相同低溫?zé)嵩矗囟葹椋┲g的一切可逆機(jī)。不論用什么工作物質(zhì)效率都相同。都等于。(2)在相同高溫?zé)嵩春拖嗤蜏責(zé)嵩粗g工作的一切不可逆機(jī)的效率不可能高于可逆機(jī),即。3、熱力學(xué)第二定律熱力學(xué)第二定律的二種說(shuō)法:(1)開(kāi)爾文說(shuō)法:不可能制造成一種循環(huán)動(dòng)作的熱機(jī),只

36、從一個(gè)熱源吸熱使之完全變化為有用的功,而其他物體不發(fā)生任何變化。(2)克勞修斯說(shuō)法:熱量不能自動(dòng)地從低溫物體轉(zhuǎn)向高溫物體。這二種說(shuō)法不同,其實(shí)質(zhì)是等價(jià)的。熱力學(xué)第二定律表明了自然過(guò)程進(jìn)行的方向和條件。用熱力學(xué)第二定律可以判別哪些過(guò)程是可以實(shí)現(xiàn)的,而哪些過(guò)程是不可能實(shí)現(xiàn)的。4、熵和熵增加原理。(1)克勞修斯等式:對(duì)任意可逆循環(huán)過(guò)程都有:           (2)熵,熵是一態(tài)函數(shù),以符號(hào)S表示。定義為:           上式只表明了熵差,我們關(guān)心的也只是熵差(就象計(jì)算內(nèi)能的改變,力學(xué)問(wèn)題中勢(shì)能改變一樣)熵是描述平衡態(tài)的狀態(tài)函數(shù),系統(tǒng)狀態(tài)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論