版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2020年全國普通高等學(xué)校招生統(tǒng)一考試試卷全國I卷理科數(shù)學(xué)一、選擇題1 .若 z 1 i ,則 z2 2z ()A.0B.1C. 2D.22 .設(shè)集合 A xx2 40,B x2xa0,且 AB 乂2乂1,則2()A.-4B.-2C.2D.43 .埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個(gè)正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個(gè)側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為()版權(quán)所有?正確教育 侵權(quán)必糾!A.2B.3C.6D.95.某校一個(gè)課外學(xué)習(xí)小組為研究某作物種子的發(fā)芽率y和溫度x (單位:°C)的關(guān)系,在5 1B 5 1C
2、 5 14 .2.424.已知A為拋物線C:y 2Px(p 0)上一點(diǎn),點(diǎn) A到C的焦點(diǎn)的距離為 12,到y(tǒng)軸的距離 為9,則p ()20個(gè)不同的溫度條件下進(jìn)行種子發(fā)芽實(shí)驗(yàn),由實(shí)驗(yàn)數(shù)據(jù)(X,y)(i 1,2,20)得到下面的散點(diǎn)圖:由此散點(diǎn)圖,在10 C至40 C之間,下面四個(gè)回歸方程類型中最適宜作為發(fā)芽率y和溫度A. y a bx2xB. y a bxC. y a beD. y a b In xx的回歸方程類型的是()6.函數(shù)f(x) x4 2x3的圖像在點(diǎn)(1,f (1)處的切線方程為()A. y 2x 1B. y 2x 1C. y 2x 3D. y 2x 17.設(shè)函數(shù)f (x) cos(
3、 x)在兀兀的圖像大致如下圖,則6f (x)的最小正周期為()A.巖B. 7TC.428.(x L)(x y)5的展開式中x3y3的系數(shù)為() xA. 5B. 10C. 15D. 209.已知(0,),且 3cos28cosA 八.3B.|C.1D-510.已知A,B,C為球O的球面上的三個(gè)點(diǎn),<O1為&ABC的外接圓,若i<Oi的面積為4兀ABBC AC OO1 ,則球O的表面積為()A. 64 兀B. 48 TtC.36ttD. 32 tt211.已知 A M : x2y 2x 2y0 ,直線 l : 2x±,P為l上的動點(diǎn),過點(diǎn)P作仙M的切線PA PB,切點(diǎn)
4、為A,B,|PM | AB |最小時(shí),直線AB的方程為(A. 2x y 1 0B. 2xC. 2x y 1D. 2xa12.若 2log 2 a2log 4b,則(A. a 2bB. a2bC.a b2D. a二、填空題2x13.若x,y滿足約束條件xy0,1 0,則0,x 7 y的最大值為14 .設(shè)a,b為單位向量,且|a b | 1,2215 .已知F為雙曲線C:與當(dāng)1(a a b則|a0,bb|0)的右焦點(diǎn),A為C的右頂點(diǎn),B為C上的點(diǎn),且BF垂直于x軸.若ab的斜率為3,則C的離心率為16.如圖,在三錐P -ABC的平面展開圖中,AC 1 , AB AD 73 , AB AC , AB
5、 AD ,CAE 30 ,則 cos FCB三、解答題17 .設(shè),是公比不為1的等比數(shù)列,用為a2, a3的等差中項(xiàng).求an的公比;(2)若a 1 ,求數(shù)列nan的前n項(xiàng)和.18 .如圖,D為圓錐的頂點(diǎn),。是圓錐底面的圓心,AE為底面直徑,AE AD心ABC是底面的內(nèi)接正三角形,P為DO上一點(diǎn),PO DO .6證明:PA平面PBC ;(2)求二面角B PC E的余弦值.19 .甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進(jìn)行下一場比賽,負(fù)者下一場輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直
6、至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場比賽雙方獲勝的概率1都為-. 2(1)求甲連勝四場的概率;(2)求需要進(jìn)行第五場比賽的概率;(3)求丙最終獲勝的概率.20 .已知A,B分別為橢圓E:=y2 1 a 1的左、右頂點(diǎn),G為E的上頂點(diǎn),AG GB 8 , aP為直線x 6上的動點(diǎn),PA與E的另一交點(diǎn)為C, PB與E的另一交點(diǎn)為D.(1)求E的方程;(2)證明:直線CD過定點(diǎn). x 221 .已知函數(shù)f(x) e ax x.當(dāng)a 1時(shí),討論f x的單調(diào)性;1 3(2)當(dāng)x 0時(shí),f x -x 1,求a的取值范圍. k ,x cos t,22.在直角坐標(biāo)
7、系xOy中,曲線G的參數(shù)方程為.(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),y sinktx軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為4 cos 16 sin 3 0.當(dāng)k 1時(shí),G是什么曲線?(2)當(dāng)k 4時(shí),求Ci與C2的公共點(diǎn)的直角坐標(biāo)參考答案1答案:D2答案:B3答案:C解析:如圖,設(shè)正四棱錐的高為h ,底面邊長為a ,側(cè)面三角形底邊上的高為h,則依21h -ah',題意有:2 ,因 此有h'2 (a)2 -ah',化簡得 4(-)2 2(-') 1 0 ,解得h2 h'2 (a)222a ahi5 1a 44答案:C解析:設(shè)點(diǎn) A的坐標(biāo)為(x, y
8、),由點(diǎn)A到y(tǒng)軸的距離為9可得x 9 ,由點(diǎn)A至U C的 焦點(diǎn)的距離為12,可得x p 12,解得p 6.25答案:D解析:用光滑的曲線把圖中各點(diǎn)連接起來,由圖像的大致走向判斷,此函數(shù)應(yīng)該是對數(shù)函數(shù)類型的,故應(yīng)該選用的函數(shù)模型為y a blnx.6答案:B解析:先求函數(shù)的導(dǎo)函數(shù)f'(x) 4x3 6x2,則由導(dǎo)數(shù)的幾何意義知在點(diǎn)(1,f(1)處的切線的斜率為k f'(1)2 ,又因?yàn)閒(1)1,由直線方程的點(diǎn)斜式得切線方程為:y ( 1)2(x 1),化簡得 y 2x 1.7答案:C解析:由圖知 f ( 4-) cos( 4-)9963k(k Z),又因?yàn)門 2兀43時(shí)1 |
9、| 2,所以 士,最小正周期T2I I8答案:C4 7t兀兀一所以.k# Z),化簡得96242兀,所以1 | | 2 ,當(dāng)且僅當(dāng)k 1十.故選C.解析:(x y)5的通項(xiàng)公式為C5rx5ryr(r 0,1,2,3 4,5),所以r 1時(shí),2y 14_333 2 33 33 3一C5X y 5x y , r 5,時(shí) XC5X y 10x y ,所以 x y 的系數(shù)為 15. x9答案:A22.斛析:原式化間得 3cos 4cos 4 0 ,解得cos & ,或2 (舍),又 (0,兀),所以 sin5 .10 .答案:A解析:設(shè) AB a,,O1的半徑為r ,球 O的半徑為 R ,所以
10、 1 4兀,所以r 2,而r O1A -a ,所以a 2/3, R OO1 Oi A 4 所以球 O的表面積為4kR 64兀,故 3選A.11 .答案:D 解析:iJm:(x 1)2 (y 1)2 4,12-因?yàn)?Spamb -|PM l|AB| 2S.PAM |PA|AM| 2|PA| 2j|PM |2 4 , 2所以| PM門AB |最小,即| PM |最小,此時(shí)PM與直線l垂直,PM : y 1x -, 22直線PM與直線l的交點(diǎn)P( 1,0),過直線外一點(diǎn) P作HM的切線所得切點(diǎn)弦所在直線方程為:2x y 1 0,所以選D.V12 .答案:B13 .答案:114 .答案:315 .答案
11、:2-116 .答案:-417 .答案:(1)q2; (2)Sn - (3n 1)( 2).99解析:設(shè)an的公比為q ,由題設(shè)得2a1 a2 a3 ,即2& aq aq2.所以q2 q 2 0,解得q 1(舍去),q 2.故an的公比為 2.(2)記 0為 nan的前n項(xiàng)和.由(1)及題設(shè)可得,小(2)n 1 .所以S 1 2 ( 2) n ( 2)n1 ,2Sn 2 2 ( 2)2 III (n 1) ( 2)n 1 n ( 2)n.可得 3Sn 1 ( 2) ( 2)2 III ( 2)n1 n ( 2)n1( 2)nn ( 2)n.所以S18.答案:1 (3n 1)( 2)n9
12、9(1)見解析;(2)255.解析:(1)設(shè)DO a,由題設(shè)可得PO -6 a, AO6-3a,AB3PA PB PC因此PA2 PB22AB2,從而PAPB.又 PA2 PC2 AC2,故 PA PC .所以PA(2)以 O平面PBC .I為坐標(biāo)原點(diǎn),OE的方向?yàn)閥軸正方向,Ioe|為單位長,建立如圖所示的空間直角坐標(biāo)系O xyz.由題設(shè)可得 E(0,1,0), A(0, 1,0),C ,-,0 ,P 0,0,2 2 22所以 eC V, f0 ,EP 0, 1吊 設(shè)m (x,y,z)是平面PCE的法向量,則mEP0,即0,2y 2-z 0,3inx- y 0.22可取m A, 2 .3由(
13、1)知AP0,1,q2是平面PCB的一個(gè)法向量,記n iP ,n m 2-5cos n, m |n|m|5所以二面角B PC E的余弦值為 迤.519 .答案:(1);(2)3 ;二. 16416解析:(1)甲連勝四場的概率為 .16(2)根據(jù)賽制,至少需要進(jìn)行四場比賽,至多需要進(jìn)行五場比賽 比賽四場結(jié)束,共有三種情況:1甲連勝四場的概率為 ;16乙連勝四場的概率為 ; 16丙上場后連勝三場的概率為 1.8 1113所以需要進(jìn)行第五場比賽的概率為1A A 1 3.(3)丙最終獲勝,有兩種情況:比賽四場結(jié)束且丙最終獲勝的概率為1 ;8比賽五場結(jié)束且丙最終獲勝,則從第二場開始的四場比賽按照丙的勝、
14、負(fù)、輪空結(jié)果有三種情況:勝勝負(fù)勝,勝負(fù)空勝,負(fù)空勝勝,概率分別為1J 1,16 8 8因此丙最終獲勝的概率為111178 16 8 8 162一X 2.20 .答案:(1)一 y 1; (2)見解析.9解析:(1)由題設(shè)得 A( a,0), B(a,0), G(0,1).則 AG (a,1) ,Gb(a,1).由 AG GB 8得a28,即 a 3.2所以E的方程為y2 1.9(2)設(shè) C X1» ,D X2,y2 ,P(6,t).若t 0,設(shè)直線CD的方程為x my n,由題意可知 3 n 3.由于直線PA的方程為y -(x 3),所以y1txi 399直線PB的方程為y -(x
15、3),所以y2 - X2 3 . 33可得 3y1 加 3y2 X 3 .2由于X2- y2 1 ,故y2x2 3 x293一,可得 27yi y2x13 x23 ,即-r227 m y1y2 m(n 3) y1 y2(n 3)2 0 .2將x my n代入y29222m 9 y 2mny n 9 0.所以yiy22mnn2 9m2 9代入式得27 m2 n2 9222m(n 3)mn (n 3) m 90.解得n3(舍去),n 3.233故直線CD的萬程為x my 3,即直線CD過定點(diǎn)一,0223若t 0,則直線CD的方程為y 0,過點(diǎn) 3,0 .2綜上,直線CD過定點(diǎn) 3,0221.答案:
16、(1)見解析;(2)7 e2解析:(1)當(dāng) a 1 時(shí),f(x) ex2一xx x, f '(x) e 2x 1 .故當(dāng) x (,0)時(shí),f'(x) 0 ;當(dāng) x (0,)時(shí),f'(x) 0 .所以f(x)在(,0)上單調(diào)遞減,在(0,)單調(diào)遞增.1 . .1 Q Ov f(x) -x 1 等價(jià)于 x ax x 1 e 1.2 2設(shè)函數(shù) g(x)x3 ax2 x 1 e x(x 0),則g'(x)1x3 ax2 x 1 3x2 2ax 1 ex 2212-x x2x(2a 3)x 4a 2 e1 x(x22a 1)(x 2)e x._r1.、一一(i)若2a 1
17、 0 ,即a 一,則當(dāng)x (0,2)時(shí),g'(x) 0 .所以g(x)在(0,2)單倜遞增,而 2g(0) 1 ,故當(dāng)x (0,2)時(shí),g(x) 1 ,不合題意.4n 11(ii)若 0 2a 1 2,即 2 a 萬,則當(dāng) x (0,2 a 1) (2,)時(shí),g'(x) 0;當(dāng) x (2a 1,2)時(shí),g'(x)0 .所以 g(x)在(0,2 a 1),(2,)單調(diào)遞減,在(2 a 1,2)單調(diào)遞增.由于g(0) 1,所以g(x) 1當(dāng)且僅當(dāng)g(2) (7 4a)eLL - 7 e21所以當(dāng)7ja 1時(shí),g(x) 1.1 一(iii)右 2a 1 2 ,即 a ,則 g(x) 2由于07,1 ,故由ii可得1x3 x 1 ex 1.422故當(dāng)a 1時(shí),g x21.綜上,a的取值范圍為7一,, ,一 1 122 .答案:(1)曲線Ci是圓心為坐標(biāo)原點(diǎn),半徑為 1的圓;(2),一4 4. x cost,解析:(1)當(dāng)k 1時(shí),Ci:消去參數(shù)t得x y 1,故曲線G是圓心為坐標(biāo)原點(diǎn),y sint,半徑為1的圓.xcos4 t(2)當(dāng) k 4時(shí),G:y sin4t,消去參數(shù)EG的直角坐標(biāo)方程為五1414C2的直角坐標(biāo)方程為 4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球車展品牌形象合作合同協(xié)議4篇
- 2025年冷鏈物流產(chǎn)品運(yùn)輸全程監(jiān)控合同3篇
- 2025年度生態(tài)修復(fù)工程承包山林合同書2篇
- 2024版香港高管聘用合同
- 2025年度智能倉儲承建與自動化裝修服務(wù)合同4篇
- 2024版化妝品供應(yīng)合同協(xié)議書范本
- 檢查檢驗(yàn)結(jié)果互認(rèn)知識培訓(xùn)考核試題
- 2024版技術(shù)開發(fā)合同:甲方與乙方共同研發(fā)新技術(shù)的具體內(nèi)容
- 2025年度五星級酒店廚師員工勞動合同范本4篇
- 2025年度智能豬舍承包服務(wù)合同3篇
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計(jì)與授權(quán)使用3篇
- 2024年08月云南省農(nóng)村信用社秋季校園招考750名工作人員筆試歷年參考題庫附帶答案詳解
- 防詐騙安全知識培訓(xùn)課件
- 心肺復(fù)蘇課件2024
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2024-2025學(xué)年江蘇省南京市高二上冊期末數(shù)學(xué)檢測試卷(含解析)
- 四川省名校2025屆高三第二次模擬考試英語試卷含解析
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊》專題培訓(xùn)
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院專升本管理學(xué)真題
- 考研有機(jī)化學(xué)重點(diǎn)
- 全國身份證前六位、區(qū)號、郵編-編碼大全
評論
0/150
提交評論