2021-2022學(xué)年浙江省溫州市十五校聯(lián)盟聯(lián)合體高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年浙江省溫州市十五校聯(lián)盟聯(lián)合體高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年浙江省溫州市十五校聯(lián)盟聯(lián)合體高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年浙江省溫州市十五校聯(lián)盟聯(lián)合體高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年浙江省溫州市十五校聯(lián)盟聯(lián)合體高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知隨機變量滿足,.若,則( )A,B,C,D,2若直線與圓相交所得弦長為,則( )A1B2CD33設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為( )AB3C1D4執(zhí)行如圖所示的程序框圖

2、,若輸入,則輸出的( )A4B5C6D75中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有( )A12種B24種C36種D48種6空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是( )A這20天中指數(shù)值的中位數(shù)略高于100B

3、這20天中的中度污染及以上(指數(shù))的天數(shù)占C該市10月的前半個月的空氣質(zhì)量越來越好D總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好7設(shè)過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則( )ABCD8設(shè)Py |yx21,xR,Qy |y2x,xR,則AP QBQ PCQDQ 9將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()ABCD10設(shè)是等差數(shù)列,且公差不為零,其前項和為則“,”是“為遞增數(shù)列”的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件11已知三點A(1,0),B(0, ),C(2,),則ABC外接

4、圓的圓心到原點的距離為()ABCD12是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知滿足且目標函數(shù)的最大值為7,最小值為1,則_14己知函數(shù),若曲線在處的切線與直線平行,則_.15已知函數(shù),則關(guān)于的不等式的解集為_16已知正項等比數(shù)列中,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)橢圓的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為(1)求橢圓的方程;(2)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由18(12

5、分)如圖,在四棱錐中,底面是直角梯形且,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.19(12分)如圖,平面四邊形為直角梯形,將繞著翻折到.(1)為上一點,且,當(dāng)平面時,求實數(shù)的值;(2)當(dāng)平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.20(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設(shè)過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當(dāng)時,求直線l的方程.21(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等

6、的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設(shè),(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.22(10分)已知a0,證明:1參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因為隨機變量滿足,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點睛

7、】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.2A【解析】將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.3D【解析】整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實部為0,虛部不為0,即可求解.【詳解】由題,因為純虛數(shù),所以,則,故選:D【點睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運算.4C【解析】根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程

8、序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.5C【解析】根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時,可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6C【

9、解析】結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運用所學(xué)知識對命題進行判斷,本題較為基礎(chǔ).7C【解析】畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進而轉(zhuǎn)為

10、坐標的表達式。寫出直線方程,再聯(lián)立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進而聯(lián)立方程組求解,是一道不錯的綜合題.8C【解析】解:因為P =y|y=-x2+1,xR=y|y1,Q =y| y=2x,xR =y|y0,因此選C9D【解析】利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,故選D【

11、點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題10A【解析】根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進行判斷即可【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時,此時,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A

12、.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關(guān)鍵,屬于中等題11B【解析】選B.考點:圓心坐標12C【解析】求出點關(guān)于直線的對稱點的坐標,進而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點,則,當(dāng)時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13-2【解析】先

13、根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可【詳解】由題意得:目標函數(shù)在點B取得最大值為7,在點A處取得最小值為1,直線AB的方程是:,則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題14【解析】先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因為函數(shù),所以,所以,解得.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15【解析】判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運用單調(diào)性,可得到所求解集【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)

14、遞增,即,即x故答案為:【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題16【解析】利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1); (2)見解析.【解析】(I)結(jié)合離心率,得到a,b,c的關(guān)系,計算A的坐標,計算切線與橢圓交點坐標,代入橢圓方程,計算參數(shù),即可(II)分切線斜率存在與不存在討論,設(shè)出M,N

15、的坐標,設(shè)出切線方程,結(jié)合圓心到切線距離公式,得到m,k的關(guān)系式,將直線方程代入橢圓方程,利用根與系數(shù)關(guān)系,表示,結(jié)合三角形相似,證明結(jié)論,即可【詳解】()設(shè)橢圓的半焦距為,由橢圓的離心率為知,橢圓的方程可設(shè)為.易求得,點在橢圓上,解得,橢圓的方程為. ()當(dāng)過點且與圓相切的切線斜率不存在時,不妨設(shè)切線方程為,由()知,.當(dāng)過點且與圓相切的切線斜率存在時,可設(shè)切線的方程為,即.聯(lián)立直線和橢圓的方程得,得.,.綜上所述,圓上任意一點處的切線交橢圓于點,都有.在中,由與相似得,為定值.【點睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關(guān)系,考查了向量的坐標運算,難度偏難18(1);(2).【

16、解析】(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結(jié).因為,所以.因為,所以.因為側(cè)面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直. 以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即

17、,化簡得,所以,符合題意.【點睛】本題考查利用向量坐標法求面面角、線面角,涉及到面面垂直的性質(zhì)定理的應(yīng)用,做好此類題的關(guān)鍵是準確寫出點的坐標,是一道中檔題.19(1);(2).【解析】(1)連接交于點,連接,利用線面平行的性質(zhì)定理可推導(dǎo)出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導(dǎo)出,可得出為平面與平面所成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,在梯形中,則,所以,;(2)取中點,連接、,過點作,則,作于,連接. 為的中點,且,且,

18、所以,四邊形為平行四邊形,由于,為的中點,所以,同理,平面,為面與面所成的銳二面角,則,平面,平面,面,為與底面所成的角,.在中,.因此,與平面所成角的正弦值為.【點睛】本題考查利用線面平行的性質(zhì)求參數(shù),同時也考查了線面角的計算,涉及利用二面角求線段長度,考查推理能力與計算能力,屬于中等題.20(1)(2)或.【解析】(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設(shè),顯然直線l的斜率存在,方法一:設(shè)直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設(shè)直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,橢圓方程為:.(2)法1:設(shè),顯然直線l的斜率存在,設(shè)直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設(shè),當(dāng)直線l與x軸重合時,不符題意.設(shè)直線l的方程為:.由方程組消去x得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論