BP神經(jīng)網(wǎng)絡(luò)模型推導(dǎo)_第1頁
BP神經(jīng)網(wǎng)絡(luò)模型推導(dǎo)_第2頁
BP神經(jīng)網(wǎng)絡(luò)模型推導(dǎo)_第3頁
BP神經(jīng)網(wǎng)絡(luò)模型推導(dǎo)_第4頁
BP神經(jīng)網(wǎng)絡(luò)模型推導(dǎo)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Theprojectdescribesteachingprocessofmulti-layerneuralnetworkemployingbackpropagationalgoritlmi.Toillustratethisprocessthethreelayerneuralnetworkwithtwoinputsandoneoutput.whichisshowninthepicturebelow,isused:Eachneuroniscomposedoftwounits.Fiistunitaddsproductsofweightscoefficientsandinputsignals.Thes

2、econdunitrealisenonlinearfiinction,calledneuronactivationfunction.Signaleisadderoutputsignal,andy=f(e)isoutputsignalofnonlinearelement.SignalyisalsooutputsignalofneuronX1X1X2Toteachtheneuralnetworkweneedtrainingdataset.Thetrainingdatasetconsistsofinputsignals(x/andX2)assignedwithcorrespondingtarget(

3、deskedoutput)乙ThenetworktrainingisaniterativeprocessIneachiterationweightscoefficientsofnodesaremodifiedusingnewdatafromtrainingdataset.Modificationiscalculatedusingalgoritlmidescribedbelow:Eachteachingstepstartswithforcingbothinputsignalsfromtrainingset.Afterthisstagewecandetermineoutputsignalsvalu

4、esforeachneuronineachnetworklayerPicturesbelowillustratehowsignalispropagatingthroughthenetwork,Symbolsw(xm)nrepresentweightsofcoimectionsbetweennetworkinputxmandneuron/?ininputlayer.SymbolsynrepresentsoutputsignalofneuronXXPropagationofsignalsthroughthehiddenlayerSymbolswmnrepresentweightsofcomiect

5、ionsbetweenoutputofneuronmandinputofneuronninthenextlaver丁5=/5(15丁1十”25丁2十比5)勺)Propagationofsignalsthroughtheoutputlayer.Inthenextalgoritlmisteptheoutputsignalofthenetworkyiscomparedwiththedesiiedoutputvalue(thetarget),whichisfoundilltrainingdataset.Thedifferenceiscallederrorsignal3ofoutputlayerneur

6、onZyItisimpossibletocomputeerrorsignalforinternalneuronsdirectly,becauseoutputvaluesoftheseneuronsareuiikiiown.Formanyyearstheeffectivemethodfortrainingmultiplayernetworkshasbeenunknown.Onlyinthemiddleeightiesthebackpropagationalgoritlmihasbeenworkedout.TheideaistopropagateerrorsignalS(computedinsin

7、gleteachingstep)backtoallneurons,whichoutputsignalswereinputfordiscussedneuron.Theweights1coefficientswmnusedtopropagateerrorsbackareequaltothisusedduringcomputingoutputvalue.Onlythediiectionofdataflowischanged(signalsarepropagatedfromoutputtoinputsoneaftertheother).Thisteclmiqueisusedforallnetworkl

8、ayers.Ifpropagatederrorscamefromfewneuronstheyareadded.Theillustrationisbelow:JXXX1X2X1二叫46+255yWhentheerrorsignalforeachneuroniscomputed,theweightscoefficientsofeachneuroninputnodemaybemodified.Informulasbelowdf(e)/derepresentsderivativeofneuronactivationfunction(whichweightsaremodified)dfi(e)/dw(x

9、i)i=dfi(e)/de*de/dw(xi)i=df(e)/de*Xi閥4=眄4+帀習(xí)卑旳用24=“24+叭纓12cte卅15=嗎5十爲(wèi)聞25二叱5+帀$葺丁2川46二企耳aeCoefficient77affectsnetworkteachingspeed.ThereareafewteclmiquestoselectthisparameterThefustmethodistostartteachingprocesswithlargevalueoftheparameterWhileweightscoefficientsarebeingestablishedtheparameterisbeingdecreasedgraduallyThesecond,morecomplicated,methodstartsteachingwithsmallparametervalue.Duringtheteachingprocesstheparameterisbeingincreasedwhentheteachingisadvancedandthendecreasedagaininthef

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論