




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Transport PhenomenaDepartment of Chemical EngineeringTianjin University Jingtao Wang, Ph.D Shell momentum balances and boundary conditions Flow of a falling film Content in the Previous Class Outline The materials covered in todays class: Chapter 2:Shell Momentum Balances and Velocity Distributions
2、in Laminar Flow Section 2.3: Flow through a circular tube Section 2.4: Flow through an annulus Transport PhenomenaSection 2.3:Flow through a circular tube Transport PhenomenaDescription of the Problem:The flow of fluids in circular tubes is encountered frequently in physics, chemistry, biology, and
3、engineering. Transport PhenomenaWhat are the transport phenomena? Singapore ethylene chemical plantTransport phenomena in chemical engineering Transport PhenomenaDescription of the Problem:The laminar flow of fluids in circular tubes may be analyzed by the momentum balance. (figure)The only new feat
4、ure introduced here is the use of cylindrical coordinates, (figure)which are the natural coordinates for a pipe of circular cross section. Description of the Problem:We consider the steady-state, laminar flow of a fluid of density and viscosity in a vertical tube of length L and radius R. The liquid
5、 flows downward under the influence of a pressure difference and gravity; the coordinate system is that shown in Fig. 2.3-1. Fig. 2.3-1 Transport PhenomenaAssumption to solve the Problem:We specify that the tube length is very large with respect to the tube radius. Thus, we can ignore end effects th
6、at at the tube entrance and exit the flow will not be parallel to the tube wall. We postulate that vz = vz(r), vr = 0, v = 0, and p = p(z). Then the only nonvanishing components of are rz= zr = -(dvz/dr). Construction of the shell:We select a cylindrical shell of thickness r and length L as our syst
7、em. Transport PhenomenaContributions to the momentum balance: Transport PhenomenaConstruction of the momentum balance and simplification: We now add up the contributions to the momentum balance: (2.3-6) When we divide Eq. (2.3-6) by 2Lr and take the limit as r 0, we get (2.3-8) Transport PhenomenaNo
8、w we write out the components of and (ii) because vz = vz(r), the term vzvz will be the same at both ends of the tube; (iii) because vz = vz(r), the term will be the same at both ends of the tube. Then we make the following simplifications:(i) because vr = 0, we can drop the term vrvz in Eq. 2.3-9a;
9、 in which = p - gz is a convenient abbreviation for the sum of the pressure and gravitational terms. Transport PhenomenaHence, Eq. 2.3-8(2.3-10) Equation 2.3-10 may be integrated to give simplifies to Transport PhenomenaThe constant C 1 is evaluated by using the boundary condition Consequently C 1 m
10、ust be zero, for otherwise the momentum flux would be infinite at the axis of the tube. Therefore the momentum flux distribution is Newtons law of viscosity for this situation (2.3-15) Transport Phenomena Transport PhenomenaFig. 2.3-2 The momentum-flux distribution and velocity distribution for the
11、downward flow in a circular tube. Transport Phenomena Transport Phenomena Transport Phenomena Transport PhenomenaSection 2.3:Flow through an annulus Transport PhenomenaDescription of the Problem:We now solve the steady-state flow of an pressible liquid in an annular region between two coaxial cylind
12、ers of radii R and R as shown in Fig. 2.4-1.The fluid is flowing upward in the tube, that is, in the direction opposed to gravity. Transport PhenomenaAssumption to solve the Problem:We make the same postulates as in the previous section vz = vz(r), vr = 0, v = 0, and p = p(z).Then when we make a mom
13、entum balance over a thin cylindrical shell of liquid, we arrive at the following differential equation: Construction of the momentum balance and simplification: (2.4-1) - Transport PhenomenaIntegration of Eq. 2.4-1 gives (2.4-2) The constant C1 cannot be determined immediately, since we have no inf
14、ormation about the momentum flux at the fixed surfaces r = R and r = R.(2.4-3) All we know is that there will be a maximum in the velocity curve at some (as yet unknown) plane r = R at which the momentum flux will be zero. That is, Transport PhenomenaWhen we solve this equation for C1 and substitute
15、 it into Eq. 2.4-2, we (2.4-4) In this equation the constant of integration C1 has been eliminated by introducing a different constant . The advantage of this is that we know the geometrical significance of . Substituting Newtons law of viscosity to obtain a differential equation for vz (2.4-5) Transport Phenomena Transport Phenomena Transport Phenomena Transport PhenomenaHomework: Read Bird book: 58Pretending that you are a teacher and trying to teach some students about shell balances. Please make a English
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省長(zhǎng)春市吉大附中實(shí)驗(yàn)學(xué)校2025屆七年級(jí)數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析
- 采茶廠現(xiàn)金提取限額審批制度
- 交通運(yùn)輸視頻圖像文字信息標(biāo)注規(guī)范 第8部分:內(nèi)河航道編制說明
- 河南新鄉(xiāng)2024-2025學(xué)年下學(xué)期高二歷史試卷(期末考試)
- SY航院教師績(jī)效考核體系優(yōu)化研究
- 敏感個(gè)人信息保護(hù)中告知同意規(guī)則的適用
- 獸醫(yī)寄生蟲試題庫(含答案)
- 河南輔警獎(jiǎng)懲管理辦法
- 民政入戶調(diào)查管理辦法
- 村級(jí)救助管理辦法先進(jìn)
- 2023全新包干制物業(yè)服務(wù)合同
- 外賣運(yùn)營(yíng)培訓(xùn)手冊(cè)
- 鋁壓延加工材項(xiàng)目評(píng)估報(bào)告
- 多學(xué)科治療協(xié)作模式
- (環(huán)境管理)環(huán)境保護(hù)與水土保持監(jiān)理實(shí)施細(xì)則
- 國(guó)際稅收稅收管轄權(quán)
- 云南省昆明市官渡區(qū)2022-2023學(xué)年七年級(jí)下學(xué)期期末語文試題(含答案)
- yamaha貼片機(jī)操作規(guī)程
- 標(biāo)準(zhǔn)化知識(shí)競(jìng)賽考試題庫(含答案)
- 榆林市榆陽區(qū)郝家梁煤礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 管道護(hù)理業(yè)務(wù)學(xué)習(xí)課件
評(píng)論
0/150
提交評(píng)論