版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1設(shè)點(diǎn),不共線,則“”是“”( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分又不必要條件2已知函數(shù),若方程恰有三個(gè)不相等的實(shí)根,則的取值范圍為( )ABCD3已知復(fù)數(shù)滿足:,則
2、的共軛復(fù)數(shù)為( )ABCD4某學(xué)校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是17.5,30,樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是( )A56B60C140D1205已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是ABCD6設(shè),是空間兩條不同的直線,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:若,則;若,則;若,則;若,則.其中正確的是( )ABCD7函數(shù)的部分圖像大致為( )ABCD
3、8設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()ABCD9函數(shù)f(x)=lnABCD10設(shè)集合,則( )ABCD11運(yùn)行如圖程序,則輸出的S的值為() A0B1C2018D201712已知拋物線:的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),其中點(diǎn)在第一象限,若弦的長(zhǎng)為,則( )A2或B3或C4或D5或二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)的最小值為2,則_14在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為_.15已知變量x,y滿足約束條件x-y0 x+2y34x-y-6,則16有以下四個(gè)命題:在中,的充要條件是;函數(shù)在區(qū)間上存在零點(diǎn)的充要條件是;對(duì)于函數(shù),
4、若,則必不是奇函數(shù);函數(shù)與的圖象關(guān)于直線對(duì)稱.其中正確命題的序號(hào)為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)求不等式的解集;(2)若對(duì)任意恒成立,求的取值范圍.18(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值19(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)求證:四邊形是平行四
5、邊形.四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.20(12分)如圖1,在等腰中,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值21(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動(dòng)直線l與曲線C有且只有一個(gè)公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時(shí),求(O為坐標(biāo)原點(diǎn))面積的取值范圍.22(10分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.2023學(xué)年模擬測(cè)試卷參
6、考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【題目詳解】由于點(diǎn),不共線,則“”;故“”是“”的充分必要條件.故選:C.【答案點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.2、B【答案解析】由題意可將方程轉(zhuǎn)化為,令,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【題目詳解】由題意知方程在上恰有三個(gè)不相等的實(shí)根,即,.因?yàn)?,式兩邊同除以,?所以方程有三個(gè)不等的正實(shí)根.記,
7、則上述方程轉(zhuǎn)化為.即,所以或.因?yàn)椋?dāng)時(shí),所以在,上單調(diào)遞增,且時(shí),.當(dāng)時(shí),在上單調(diào)遞減,且時(shí),.所以當(dāng)時(shí),取最大值,當(dāng),有一根.所以恰有兩個(gè)不相等的實(shí)根,所以.故選:B.【答案點(diǎn)睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.3、B【答案解析】轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【題目詳解】復(fù)數(shù)滿足:所以 故選:B【答案點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.4、C【答案解析】試題分析:由題意得,自習(xí)時(shí)間不少于小時(shí)的頻率為,故自習(xí)時(shí)間不少于小時(shí)的頻率為,故選C.考點(diǎn):頻率分布直方圖及其應(yīng)用5、A【答案解析
8、】根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【題目詳解】 為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù) 在上是減函數(shù) ,即對(duì)于恒成立 在上恒成立,即的取值范圍為:本題正確選項(xiàng):【答案點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.6、C【答案解析】根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【題目詳解】解:、也可能相交或異面,故錯(cuò):因?yàn)?,所以或,因?yàn)?,所以,故?duì):
9、或,故錯(cuò):如圖因?yàn)?,在?nèi)過點(diǎn)作直線的垂線,則直線,又因?yàn)?,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因?yàn)椋?所以,所以,故對(duì).故選:C【答案點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.7、A【答案解析】根據(jù)函數(shù)解析式,可知的定義域?yàn)?,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【題目詳解】解:因?yàn)?,所以的定義域?yàn)?,則,為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),排除選項(xiàng),所以正確.故選:A.【答案點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.8、B【答案解析】根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即
10、可求解.【題目詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,代入可得,解得.故選:B.【答案點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9、C【答案解析】因?yàn)閒x=lnx2-4x+4x-23=10、D【答案解析】根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【題目詳解】根據(jù)題意,則故選:D【答案點(diǎn)睛】此題考查集合的交并集運(yùn)算,屬于簡(jiǎn)單題目,11、D【答案解析】依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán)輸出1選D12、C【答案解
11、析】先根據(jù)弦長(zhǎng)求出直線的斜率,再利用拋物線定義可求出.【題目詳解】設(shè)直線的傾斜角為,則,所以,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【答案點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,弦長(zhǎng)問題一般是利用弦長(zhǎng)公式來處理.出現(xiàn)了到焦點(diǎn)的距離時(shí),一般考慮拋物線的定義.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】首先利用絕對(duì)值的意義去掉絕對(duì)值符號(hào),之后再結(jié)合后邊的函數(shù)解析式,對(duì)照函數(shù)值等于2的時(shí)候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點(diǎn),從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【題目詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當(dāng)或時(shí)是分界
12、點(diǎn),結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點(diǎn),故,解得,故答案是.【答案點(diǎn)睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、【答案解析】利用,解出,即可求出雙曲線的漸近線方程.【題目詳解】,且,該雙曲線的漸近線方程為:.故答案為:.【答案點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.15、-5【答案解析】畫出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點(diǎn)A時(shí),z最小,求解即可?!绢}目詳解】畫出x,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)
13、z=x-2y經(jīng)過點(diǎn)A【答案點(diǎn)睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。16、【答案解析】由三角形的正弦定理和邊角關(guān)系可判斷;由零點(diǎn)存在定理和二次函數(shù)的圖象可判斷;由,結(jié)合奇函數(shù)的定義,可判斷;由函數(shù)圖象對(duì)稱的特點(diǎn)可判斷【題目詳解】解:在中,故正確;函數(shù)在區(qū)間上存在零點(diǎn),比如在存在零點(diǎn),但是,故錯(cuò)誤;對(duì)于函數(shù),若,滿足,但可能為奇函數(shù),故錯(cuò)誤; 函數(shù)與的圖
14、象,可令,即,即有和的圖象關(guān)于直線對(duì)稱,即對(duì)稱,故錯(cuò)誤故答案為:【答案點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)存在定理和對(duì)稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、 (1);(2).【答案解析】(1)通過討論的范圍,分為,三種情形,分別求出不等式的解集即可;(2)通過分離參數(shù)思想問題轉(zhuǎn)化為,根據(jù)絕對(duì)值不等式的性質(zhì)求出最值即可得到的范圍.【題目詳解】(1)當(dāng)時(shí),原不等式等價(jià)于,解得,所以,當(dāng)時(shí),原不等式等價(jià)于,解得,所以此時(shí)不等式無解,當(dāng)時(shí),原不等式等價(jià)于,解得,所以 綜上所述,不等式解集為. (2)由,得,當(dāng)時(shí),恒成立,所以;
15、 當(dāng)時(shí),. 因?yàn)楫?dāng)且僅當(dāng)即或時(shí),等號(hào)成立,所以;綜上的取值范圍是.【答案點(diǎn)睛】本題考查了解絕對(duì)值不等式問題,考查絕對(duì)值不等式的性質(zhì)以及分類討論思想,轉(zhuǎn)化思想,屬于中檔題.18、(1)見解析(2)【答案解析】(1)推導(dǎo)出,從而平面,由面面垂直的判定定理即可得證(2)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【題目詳解】(1)因?yàn)?,面,平面,平面,平面,又平面,平面平面;?)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則
16、,時(shí)取得最大值,最大值為,則最小值為【答案點(diǎn)睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.19、(1);(2)證明見解析;能,.【答案解析】(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)設(shè),寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo). 設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),可得線段相互平分,即證四邊形是平行四邊形;若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【題目詳解】(1)因?yàn)?,所以,即拋物線C的方程是. (2)證明:由得,.設(shè), 則直線PA的方程為(),則直線PB的方程為(),由()和()解得:,所以.設(shè)點(diǎn),則直線AB的
17、方程為.由得,則,所以,所以線段PQ被x軸平分,即被線段CD平分.在中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.由知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【答案點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.20、(1)證明見解析(2)【答案解析】(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)
18、系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【題目詳解】(1)證明:取的中點(diǎn),連接.,為的中點(diǎn).又為的中點(diǎn),.依題意可知,則四邊形為平行四邊形,從而.又平面,平面,平面.(2),且,平面,平面,且,平面,以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【答案點(diǎn)睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問題,意在考查空間想象能力,推理證明和計(jì)算能力,屬于中檔題型,證明線面平行,或證明面面平行時(shí),關(guān)鍵是證明線線平行,所以做輔助線或證明時(shí),需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.21、(1);(2).【答案解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年外教服務(wù)合同
- 柜臺(tái)租賃合同的稅務(wù)處理
- 工程拆遷房屋合同模板
- 公司股權(quán)承包合同-合同范本
- 項(xiàng)目合作協(xié)議書格式模板
- 專業(yè)內(nèi)部施工承包合同模板
- 2024年二人股權(quán)購(gòu)買協(xié)議
- 2024合伙開公司合同范本
- 廣告公司經(jīng)營(yíng)權(quán)買賣合同
- 2024年超市用工協(xié)議樣本
- 成人氧氣吸入療法-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)
- 【S鋼材民營(yíng)企業(yè)經(jīng)營(yíng)管理探究17000字(論文)】
- 林木種質(zhì)資源調(diào)查表(新表)
- 蔬菜出口基地備案管理課件
- 子宮異常出血的護(hù)理
- 高考英語單詞3500記憶短文40篇
- 《耳穴療法治療失眠》課件
- 詢盤分析及回復(fù)
- 氯化工藝安全培訓(xùn)課件
- 指導(dǎo)巡察工作精細(xì)科學(xué)
- 企業(yè)法律知識(shí)培訓(xùn)消費(fèi)者權(quán)益保護(hù)實(shí)務(wù)
評(píng)論
0/150
提交評(píng)論