2023學年湖南省衡陽八中、澧縣一中高三第二次診斷性檢測數學試卷(含解析)_第1頁
2023學年湖南省衡陽八中、澧縣一中高三第二次診斷性檢測數學試卷(含解析)_第2頁
2023學年湖南省衡陽八中、澧縣一中高三第二次診斷性檢測數學試卷(含解析)_第3頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.2.雙曲線的漸近線方程為()A. B. C. D.3.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數.對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④4.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.65.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.36.已知函數f(x)=xex2+axeA.1 B.-1 C.a D.-a7.已知,且,則()A. B. C. D.8.已知數列滿足,且,則的值是()A. B. C.4 D.9.關于圓周率,數學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區(qū)間上的均勻隨機數,再統(tǒng)計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統(tǒng)計數來估計的值.若,則的估計值為()A. B. C. D.10.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內部隨機取一個點,則該點不落在任何一個小正方形內的概率是()A. B. C. D.11.定義在R上的偶函數滿足,且在區(qū)間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能12.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的各項均為正數,記為數列的前項和,若,,則______.14.已知二項式的展開式中各項的二項式系數和為512,其展開式中第四項的系數__________.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.16.已知函數為奇函數,,且與圖象的交點為,,…,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.18.(12分)設函數.(1)解不等式;(2)記的最大值為,若實數、、滿足,求證:.19.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.20.(12分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數方程化為極坐標方程:(2)求與交點的極坐標.21.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數方程為(θ為參數).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.22.(10分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.2、C【答案解析】

根據雙曲線的標準方程,即可寫出漸近線方程.【題目詳解】雙曲線,雙曲線的漸近線方程為,故選:C【答案點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.3、A【答案解析】

對于①,根據基尼系數公式,可得基尼系數越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.4、A【答案解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【題目詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【答案點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.5、D【答案解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【題目詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【答案點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.6、A【答案解析】

令xex=t,構造g(x)=xex,要使函數f(x)=xex2+axex-a有三個不同的零點x1,x2,【題目詳解】令xex=t,構造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調遞增,在1,+∞上單調遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數g(x)的圖象(見下圖),要使函數f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【答案點睛】解決函數零點問題,常常利用數形結合、等價轉化等數學思想.7、B【答案解析】分析:首先利用同角三角函數關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉化為關于的式子,代入從而求得結果.詳解:根據題中的條件,可得為銳角,根據,可求得,而,故選B.點睛:該題考查的是有關同角三角函數關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數關系式求解,也可以結合三角函數的定義式求解.8、B【答案解析】由,可得,所以數列是公比為的等比數列,所以,則,則,故選B.點睛:本題考查了等比數列的概念,等比數列的通項公式及等比數列的性質的應用,試題有一定的技巧,屬于中檔試題,解決這類問題的關鍵在于熟練掌握等比數列的有關公式并能靈活運用,尤其需要注意的是,等比數列的性質和在使用等比數列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.9、B【答案解析】

先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【題目詳解】因為,都是區(qū)間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【答案點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.10、D【答案解析】

由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【題目詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【答案點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.11、B【答案解析】

由已知可求得函數的周期,根據周期及偶函數的對稱性可求在上的單調性,結合三角函數的性質即可比較.【題目詳解】由可得,即函數的周期,因為在區(qū)間上單調遞減,故函數在區(qū)間上單調遞減,根據偶函數的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.【答案點睛】本題主要考查函數值的大小比較,根據函數奇偶性和單調性之間的關系是解決本題的關鍵.12、D【答案解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.二、填空題:本題共4小題,每小題5分,共20分。13、63【答案解析】

對進行化簡,可得,再根據等比數列前項和公式進行求解即可【題目詳解】由數列為首項為,公比的等比數列,所以63【答案點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質14、【答案解析】

先令可得其展開式各項系數的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【題目詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數為,故答案為:【答案點睛】此題考查二項式定理的應用,解題時需要區(qū)分展開式中各項系數的和與各二項式系數和,屬于基礎題.15、①②③【答案解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【題目詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【答案點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.16、18【答案解析】

由題意得函數f(x)與g(x)的圖像都關于點對稱,結合函數的對稱性進行求解即可.【題目詳解】函數為奇函數,函數關于點對稱,,函數關于點對稱,所以兩個函數圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【答案點睛】本題考查了函數對稱性的應用,結合函數奇偶性以及分式函數的性質求出函數的對稱性是解決本題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【答案解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.18、(1)(2)證明見解析【答案解析】

(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【題目詳解】(1)當時,不等式為,解得當時,不等式為,解得當時,不等式為,解得∴原不等式的解集為(2)當且僅當即時取等號,∴,∴∵,∴,∴(當且僅當時取“”)同理可得,∴∴(當且僅當時取“”)【答案點睛】本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.19、(Ⅰ);(Ⅱ)最小值和最大值.【答案解析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區(qū)間上的單調性,可知函數在區(qū)間上是減函數,在區(qū)間上是增函數,由此即可求得函數在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數,在區(qū)間上是增函數,,,∴函數在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數的周期性和單調性.20、(1)(2)與交點的極坐標為,和【答案解析】

(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論