版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)2.設(shè)集合,,若集合中有且僅有2個(gè)元素,則實(shí)數(shù)的取值范圍為A. B.C. D.3.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件4.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)5.已知定義在R上的函數(shù)(m為實(shí)數(shù))為偶函數(shù),記,,則a,b,c的大小關(guān)系為()A. B. C. D.6.甲、乙、丙三人相約晚上在某地會(huì)面,已知這三人都不會(huì)違約且無兩人同時(shí)到達(dá),則甲第一個(gè)到、丙第三個(gè)到的概率是()A. B. C. D.7.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.68.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.129.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.10.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.11.已知集合,,則=()A. B. C. D.12.射線測(cè)厚技術(shù)原理公式為,其中分別為射線穿過被測(cè)物前后的強(qiáng)度,是自然對(duì)數(shù)的底數(shù),為被測(cè)物厚度,為被測(cè)物的密度,是被測(cè)物對(duì)射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測(cè)量鋼板的厚度.若這種射線對(duì)鋼板的半價(jià)層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價(jià)層厚度是指將已知射線強(qiáng)度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.14.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為___.15.設(shè)f(x)=etx(t>0),過點(diǎn)P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點(diǎn)為Q,曲線C過點(diǎn)Q的切線交x軸于點(diǎn)R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.?dāng)?shù)據(jù)的標(biāo)準(zhǔn)差為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin18.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)在平面直角坐標(biāo)系中,,,且滿足(1)求點(diǎn)的軌跡的方程;(2)過,作直線交軌跡于,兩點(diǎn),若的面積是面積的2倍,求直線的方程.20.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,且.若點(diǎn)為的準(zhǔn)線上的任意一點(diǎn),過點(diǎn)作的兩條切線,其中為切點(diǎn).(1)求拋物線的方程;(2)求證:直線恒過定點(diǎn),并求面積的最小值.21.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.22.(10分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.2.B【解析】
由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點(diǎn)睛】本題主要考查了集合的關(guān)系及運(yùn)算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.3.C【解析】
先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.4.C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡(jiǎn)單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項(xiàng).【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點(diǎn)睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡(jiǎn)單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.5.B【解析】
根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對(duì)于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大?。?.D【解析】
先判斷是一個(gè)古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個(gè)到、丙第三個(gè)到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個(gè)到、丙第三個(gè)到有甲乙丙,共1種,所以甲第一個(gè)到、丙第三個(gè)到的概率是.故選:D【點(diǎn)睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.7.A【解析】
作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查基本不等式,屬于中檔題.8.C【解析】
分析:先畫出滿足約束條件對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.9.B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.10.A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.11.C【解析】
計(jì)算,,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計(jì)算能力.12.C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因?yàn)?所以,即.所以這種射線的吸收系數(shù)為.故選:C【點(diǎn)睛】本題主要考查知識(shí)的遷移能力,把數(shù)學(xué)知識(shí)與物理知識(shí)相融合;重點(diǎn)考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由題意,可得所得到的幾何體是由一個(gè)圓柱挖去兩個(gè)半球而成;其中,圓柱的底面半徑為1,母線長(zhǎng)為2;體積為;兩個(gè)半球的半徑都為1,則兩個(gè)半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.14.【解析】
由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【點(diǎn)睛】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15.【解析】
計(jì)算R(t,0),PR=t﹣(t),△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導(dǎo)數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,當(dāng)t>1時(shí),S′>0,當(dāng)0<t<1時(shí),S′<0,∴t=1為極小值點(diǎn),也為最小值點(diǎn),∴△PRS的面積的最小值為.故答案為:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求面積的最值問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16.【解析】
先計(jì)算平均數(shù)再求解方差與標(biāo)準(zhǔn)差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標(biāo)準(zhǔn)差,故答案為:【點(diǎn)睛】本題主要考查了標(biāo)準(zhǔn)差的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運(yùn)用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應(yīng)用余弦定理,可得a2化簡(jiǎn)得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因?yàn)閎=32得34又因?yàn)閍c≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關(guān)系定理可知綜上a+c∈(考點(diǎn):1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應(yīng)用.18.(1);(2)【解析】
(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項(xiàng)和公式,即可求解.【詳解】(1)因?yàn)椋?,又所以?shù)列為等比數(shù)列,且首項(xiàng)為,公比為.故(2)由(1)知,所以所以【點(diǎn)睛】本題考查等比數(shù)列的定義及通項(xiàng)公式、等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.19.(1).(2)的方程為.【解析】
(1)令,則,由此能求出點(diǎn)C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達(dá)定理,三角形面積公式,結(jié)合已知條件能求出直線的方程?!驹斀狻拷猓海?)因?yàn)?,即直線的斜率分別為且,設(shè)點(diǎn),則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為?!军c(diǎn)睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關(guān)系,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題。20.(1)(2)見解析,最小值為4【解析】
(1)根據(jù)焦點(diǎn)到直線的距離列方程,求得/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國際貨物買賣合同CIF術(shù)語
- 2024天津市勞動(dòng)合同范本
- 2024裝飾工程勞務(wù)分包標(biāo)準(zhǔn)合同
- 2024年度企業(yè)管理系統(tǒng)升級(jí)合同
- 2024年企業(yè)咨詢服務(wù)提供合同
- 2024年度安置房買賣合同中的交易過程監(jiān)督
- 2024企業(yè)間貸款合同范文
- 2024建材訂貨合同范文
- 2024年度安徽省某地行政中心建筑施工合同
- 2024年度廣告制作合同:某廣告公司對(duì)客戶的廣告制作及標(biāo)的廣告創(chuàng)意要求
- 鎮(zhèn)衛(wèi)生院績(jī)效考核方案
- 9.2+積極投身創(chuàng)新實(shí)踐(高效教案)-【中職專用】中職思想政治《哲學(xué)與人生》(高教版2023基礎(chǔ)模塊)
- 【高中語文】《邏輯的力量》課件+統(tǒng)編版++選擇性必修上冊(cè)
- 生態(tài)文明-撐起美麗中國夢(mèng)學(xué)習(xí)通章節(jié)答案期末考試題庫2023年
- 傳染病報(bào)告卡
- 項(xiàng)目物資管理員培訓(xùn)交底總結(jié)
- 習(xí)近平總書記關(guān)于教育的重要論述研究(安慶師范大學(xué)版)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 法院訴訟指定監(jiān)護(hù)人申請(qǐng)書
- 類風(fēng)濕性關(guān)節(jié)炎綜述4572
- 機(jī)關(guān)事業(yè)單位公文寫作培訓(xùn)-課件
評(píng)論
0/150
提交評(píng)論