版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位2.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為()A. B. C. D.3.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.844.已知集合則()A. B. C. D.5.已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.6.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.7.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]8.已知集合,,,則()A. B. C. D.9.根據(jù)如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.10.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.11.已知實數(shù),,函數(shù)在上單調遞增,則實數(shù)的取值范圍是()A. B. C. D.12.已知集合,,若,則()A.或 B.或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為__________.14.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB15.已知實數(shù),滿足,則目標函數(shù)的最小值為__________.16.已知是等比數(shù)列,若,,且∥,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.18.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.19.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?0.(12分)已知(1)若,且函數(shù)在區(qū)間上單調遞增,求實數(shù)a的范圍;(2)若函數(shù)有兩個極值點,且存在滿足,令函數(shù),試判斷零點的個數(shù)并證明.21.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.22.(10分)中國古代數(shù)學經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學生對于三角函數(shù)知識的綜合應用.2、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內(nèi)切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質,考查三角形的內(nèi)心的概念,考查了轉化的思想,屬于中檔題.3、D【解析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.4、B【解析】
解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎題.5、A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質等知識,考查轉化能力,屬于中檔題。6、C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.7、B【解析】
作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.8、A【解析】
求得集合中函數(shù)的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數(shù)值域的求法,考查集合補集、交集的概念和運算,屬于基礎題.9、C【解析】
根據(jù)程序圖,當x<0時結束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運行,x=1-2=-1<0,程序運行結束,得,故選C.【點睛】本題考查程序框圖,是基礎題.10、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.11、D【解析】
根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質分析可得①,當,由導數(shù)與函數(shù)單調性的關系可得,在上恒成立,變形可得②,再結合函數(shù)的單調性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調遞增,
當,若為增函數(shù),則①,
當,若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點睛】本題考查函數(shù)單調性的性質以及應用,注意分段函數(shù)單調性的性質.12、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
分別用1和進行分類討論即可【詳解】當?shù)谝粋€因式取1時,第二個因式應取含的項,則對應系數(shù)為:;當?shù)谝粋€因式取時,第二個因式應取含的項,則對應系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數(shù)的求解,屬于基礎題14、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統(tǒng)一用AC,15、-1【解析】
作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.【詳解】作出實數(shù)x,y滿足對應的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當直線yx經(jīng)過點A時,直線yx的縱截距最小,此時z最?。?,得A(﹣1,﹣1),此時z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法,是基礎題16、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯(lián)立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯(lián)立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(?。┊斉c軸垂直時,設直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設,,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關系,考查韋達定理的應用,考查了學生的計算能力,是中檔題.18、(1)見解析;(2).【解析】
(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得二面角的余弦值,進而可求得其正弦值.【詳解】(1)取中點,連接、、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、,,,,設平面的法向量為,由,得,取,則,,,設平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.19、(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標系,設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.20、(1)(2)函數(shù)有兩個零點和【解析】試題分析:(1)求導后根據(jù)函數(shù)在區(qū)間單調遞增,導函數(shù)大于或等于0(2)先判斷為一個零點,然后再求導,根據(jù),化簡求得另一個零點。解析:(1)當時,,因為函數(shù)在上單調遞增,所以當時,恒成立.[來源:Z&X&X&K]函數(shù)的對稱軸為.①,即時,,即,解之得,解集為空集;②,即時,即,解之得,所以③,即時,即,解之得,所以綜上所述,當函數(shù)在區(qū)間上單調遞增.(2)∵有兩個極值點,∴是方程的兩個根,且函數(shù)在區(qū)間和上單調遞增,在上單調遞減.∵∴函數(shù)也是在區(qū)間和上單調遞增,在上單調遞減∵,∴是函數(shù)的一個零點.由題意知:∵,∴,∴∴,∴又=∵是方程的兩個根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調遞增,在上單調遞減,在上單調遞增∴當時,,當時,當時,∴函數(shù)有兩個零點和.21、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調性問題轉化為證明,即證,令,根據(jù)函數(shù)的單調性證明即可.【詳解】(Ⅰ)的定義域為且令,得;令,得在上單調遞增,在上單調遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調遞增,在上單調遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點睛】本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,考查不等式的證明,考查運算求解能力及化歸與轉化思想,關鍵是能夠構造出合適的函數(shù),將問題轉化為函數(shù)最值的求解問題,屬于難題.22、(1)證明見解析,是,,,,;(2)【解析】
(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年保密協(xié)議:甲方和乙方約定保守商業(yè)秘密違反者需承擔違約責任
- 2024年創(chuàng)新地坪工程分包協(xié)議
- 2024全程代理傳播推廣連帶責任協(xié)議
- 2024年大型港口工程建設合同
- 2024年小學學生才藝比賽組織合同
- 2024全新機械設備租賃與維修合同
- 2024年專用:雙方關于2024年廢舊物資回收與處理合同
- 2(2024版)無人機研發(fā)與銷售代理合同
- 2024年工程綜合服務與材料周轉承包合同
- 2024年城市供水供電供氣合同條款
- 幼兒園國防教育課件動態(tài)PPT模板紅色水墨漸變簡約卡通
- 西方馬克思主義哲(共74張PPT)
- 外貿(mào)業(yè)務員個人業(yè)務工作總結述職報告模板課件
- 《高空拋物行為的侵權責任(論文)8000字》
- 分子標記及其在植物遺傳育種中的應用課件
- 二年級數(shù)學22-分物游戲-優(yōu)秀課件
- 猴痘診療指南(2022年版)PPT
- 駐外人員補助標準
- 危大工程巡視檢查記錄
- 《科學社會主義的理論與實踐》課件
- ACS患者隨訪管理表1-3-16
評論
0/150
提交評論