2023學年江西省豐城市中考數(shù)學最后一模試卷含解析及點睛_第1頁
2023學年江西省豐城市中考數(shù)學最后一模試卷含解析及點睛_第2頁
2023學年江西省豐城市中考數(shù)學最后一模試卷含解析及點睛_第3頁
2023學年江西省豐城市中考數(shù)學最后一模試卷含解析及點睛_第4頁
2023學年江西省豐城市中考數(shù)學最后一模試卷含解析及點睛_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.化簡÷的結果是()A. B. C. D.2(x+1)2.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣23.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.164.在下列交通標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.116.如圖,直線、及木條在同一平面上,將木條繞點旋轉到與直線平行時,其最小旋轉角為().A. B. C. D.7.將拋物線向上平移3個單位,再向左平移2個單位,那么得到的拋物線的解析式為()A. B. C. D.8.自1993年起,聯(lián)合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數(shù)據(jù)整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.9.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣610.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④11.下列計算正確的是A. B. C. D.12.已知直線與直線的交點在第一象限,則的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.14.計算(2+1)(2-1)的結果為_____.15.如圖,正方形OABC與正方形ODEF是位似圖形,點O為位似中心,位似比為2:3,點B、E在第一象限,若點A的坐標為(1,0),則點E的坐標是______.16.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發(fā),沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內滑動,設運動時間為秒,當?shù)竭_原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當?shù)倪吪c坐標軸平行時,______.17.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內,且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.18.如圖是一位同學設計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發(fā)經平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標;(2)將△ABC沿x軸的正方向平移,在第一象限內B、C兩點的對應點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內當y1<y2時x的取值范圍.20.(6分)如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數(shù)和一次函數(shù)的解析式.若一次函數(shù)的圖象與x軸相交于點C,求∠ACO的度數(shù).結合圖象直接寫出:當>>0時,x的取值范圍.21.(6分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.22.(8分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為度;(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.23.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.24.(10分)如圖,已知一次函數(shù)y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數(shù)y=ax1+bx+c的圖象交于y軸上一點B,該二次函數(shù)的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數(shù)y=ax1+bx+c的解析式;(3)設一次函數(shù)y=x+m的圖象與二次函數(shù)y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.25.(10分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內選取一個合適的整數(shù)作為x的值代入求值.26.(12分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)27.(12分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數(shù)m取何值,方程總有兩個實數(shù)根;(2)若方程有一個根的平方等于4,求m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.2、C【解析】

方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關鍵.3、B【解析】根據(jù)平移的基本性質,得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點睛”本題考查平移的基本性質:①平移不改變圖形的形狀和大??;②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關鍵.4、C【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義進行分析即可.【詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項錯誤.故選C.【點睛】考點:1、中心對稱圖形;2、軸對稱圖形5、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.6、B【解析】

如圖所示,過O點作a的平行線d,根據(jù)平行線的性質得到∠2=∠3,進而求出將木條c繞點O旋轉到與直線a平行時的最小旋轉角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉與平行線,解題的關鍵是熟練掌握平行線的性質.7、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】將拋物線向上平移3個單位,再向左平移2個單位,根據(jù)拋物線的平移規(guī)律可得新拋物線的解析式為,故答案選A.8、D【解析】分析:中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.詳解:這組數(shù)據(jù)的中位數(shù)是;這組數(shù)據(jù)的眾數(shù)是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).9、D【解析】試題分析:連結OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.10、D【解析】

①根據(jù)作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質來求∠ADC的度數(shù);③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據(jù)作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規(guī)作角平分線、角平分線的性質定理、三角形的外角以及等腰三角形的性質,熟練掌握有關知識點是解答的關鍵.11、B【解析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進行計算.12、C【解析】

根據(jù)題意畫出圖形,利用數(shù)形結合,即可得出答案.【詳解】根據(jù)題意,畫出圖形,如圖:當時,兩條直線無交點;當時,兩條直線的交點在第一象限.故選:C.【點睛】本題主要考查兩個一次函數(shù)的交點問題,能夠數(shù)形結合是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.14、1【解析】

利用平方差公式進行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進行二次根式的乘除運算,然后合并同類二次根式.15、(,)【解析】

由題意可得OA:OD=2:3,又由點A的坐標為(1,0),即可求得OD的長,又由正方形的性質,即可求得E點的坐標.【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為2:3,∴OA:OD=2:3,∵點A的坐標為(1,0),即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點的坐標為:(,).故答案為:(,).【點睛】此題考查了位似變換的性質與正方形的性質,注意理解位似變換與相似比的定義是解此題的關鍵.16、4【解析】

(1)由等腰三角形的性質可得AD=BD,從而可求出OD=4,然后根據(jù)當O,D,C共線時,OC取最大值求解即可;(2)根據(jù)等腰三角形的性質求出CD,分AC∥y軸、BC∥x軸兩種情況,根據(jù)相似三角形的判定定理和性質定理列式計算即可.【詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,

則當t=或時,△ABC的邊與坐標軸平行.

故答案為t=或.【點睛】本題考查的是直角三角形的性質,等腰三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.17、(6,4)或(﹣4,﹣6)【解析】

設點P的橫坐標為x,表示出縱坐標,然后列方程求出x,再求解即可.【詳解】解:設點P的橫坐標為x,則點P的縱坐標為x-2,由題意得,

當點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標,讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關鍵.18、10【解析】

首先證明△ABP∽△CDP,可得=,再代入相應數(shù)據(jù)可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點睛】本題考查了相似三角形的應用,解題的關鍵是熟練的掌握相似三角形的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)C(﹣3,2);(2)y1=,y2=﹣x+3;(3)3<x<1.【解析】分析:(1)過點C作CN⊥x軸于點N,由已知條件證Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3結合點C在第二象限即可得到點C的坐標;(2)設△ABC向右平移了c個單位,則結合(1)可得點C′,B′的坐標分別為(﹣3+c,2)、(c,1),再設反比例函數(shù)的解析式為y1=,將點C′,B′的坐標代入所設解析式即可求得c的值,由此即可得到點C′,B′的坐標,這樣用待定系數(shù)法即可求得兩個函數(shù)的解析式了;(3)結合(2)中所得點C′,B′的坐標和圖象即可得到本題所求答案.詳解:(1)作CN⊥x軸于點N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵點C在第二象限,∴C(﹣3,2);(2)設△ABC沿x軸的正方向平移c個單位,則C′(﹣3+c,2),則B′(c,1),設這個反比例函數(shù)的解析式為:y1=,又點C′和B′在該比例函數(shù)圖象上,把點C′和B′的坐標分別代入y1=,得﹣1+2c=c,解得c=1,即反比例函數(shù)解析式為y1=,此時C′(3,2),B′(1,1),設直線B′C′的解析式y(tǒng)2=mx+n,∵,∴,∴直線C′B′的解析式為y2=﹣x+3;(3)由圖象可知反比例函數(shù)y1和此時的直線B′C′的交點為C′(3,2),B′(1,1),∴若y1<y2時,則3<x<1.點睛:本題是一道綜合考查“全等三角形”、“一次函數(shù)”、“反比例函數(shù)”和“平移的性質”的綜合題,解題的關鍵是:(1)通過作如圖所示的輔助線,構造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性質結合點B、C的坐標表達出點C′和B′的坐標,由點C′和B′都在反比例函數(shù)的圖象上列出方程,解方程可得點C′和B′的坐標,從而使問題得到解決.20、(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】

(1)根據(jù)△AOB的面積可求AB,得A點坐標.從而易求兩個函數(shù)的解析式;(2)求出C點坐標,在△ABC中運用三角函數(shù)可求∠ACO的度數(shù);(3)觀察第一象限內的圖形,反比例函數(shù)的圖象在一次函數(shù)的圖象的上面部分對應的x的值即為取值范圍.【詳解】(1)∵△AOB的面積為1,并且點A在第一象限,∴k=2,∴y=;∵點A的橫坐標為1,∴A(1,2).把A(1,2)代入y=ax+1得,a=1.∴y=x+1.(2)令y=0,0=x+1,∴x=?1,∴C(?1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由圖象可知,在第一象限,當y>y>0時,0<x<1.在第三象限,當y>y>0時,?1<x<0(舍去).【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于結合函數(shù)圖象進行解答.21、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設拋物線頂點式解析式y(tǒng)=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;

(3)先根據(jù)面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點睛】本題考查的是二次函數(shù)的綜合應用,熟練掌握二次函數(shù)的性質是解題的關鍵.22、(1)2、45、20;(2)72;(3)【解析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總人數(shù),總人數(shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總人數(shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調查的總人數(shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個可能的結果,選中的兩名同學恰好是甲、乙的結果有2個,故P(選中的兩名同學恰好是甲、乙)=.點睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計圖、條形統(tǒng)計圖的應用,要熟練掌握.23、(1)43;(2)S【解析】分析:(1)過點D作DH⊥AB,根據(jù)角平分線的性質得到DH=DC根據(jù)正弦的定義列出方程,解方程即可;(2)根據(jù)三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.24、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】

(1)根據(jù)y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(1)二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1.得出可設二次函數(shù)y=ax1+bx+c=a(x﹣1)1,進而求出即可;(3)根據(jù)當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.【詳解】(1)∵y=x+1交x軸于點A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點B,∵x=0,∴y=1∴B點坐標為:(0,1),(1)∵二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1∴可設二次函數(shù)y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函數(shù)的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)當B為直角頂點時,過B作BP1⊥AD交x軸于P1點由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,連接BP1,將y=0.5x+1與y=0.5x1﹣1x+1聯(lián)立求出兩函數(shù)交點坐標:D點坐標為:(5,4.5),則AD=,當D為直角頂點時∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,則OP1=11.15﹣4=7.15,故P1點坐標為(7.15,0);∴點P的坐標為:P1(1,0)和P1(7.15,0).【點睛】此題主要考查了二次函數(shù)綜合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論