版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)必求其心得,業(yè)必貴于專(zhuān)精學(xué)必求其心得,業(yè)必貴于專(zhuān)精PAGE12學(xué)必求其心得,業(yè)必貴于專(zhuān)精PAGE2空間向量的運(yùn)算(一)學(xué)習(xí)目標(biāo)1.會(huì)用平行四邊形法則、三角形法則作出向量的和與差.2.了解向量加法的交換律和結(jié)合律.知識(shí)點(diǎn)空間向量的加減運(yùn)算及運(yùn)算律思考1下面給出了兩個(gè)空間向量a、b,作出b+a,b-a.思考2由上述的運(yùn)算過(guò)程總結(jié)一下,如何求空間兩個(gè)向量的和與差?下面兩個(gè)圖形中的運(yùn)算分別運(yùn)用了什么運(yùn)算法則?梳理(1)類(lèi)似于平面向量,可以定義空間向量的加法和減法運(yùn)算.eq\o(OB,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(AB,\s\up6(→))=a+b,eq\o(CA,\s\up6(→))=eq\o(OA,\s\up6(→))-eq\o(OC,\s\up6(→))=a-b(2)空間向量的加法交換律a+b=________,空間向量的加法結(jié)合律(a+b)+c=a+(b+c).類(lèi)型一向量式的化簡(jiǎn)例1如圖,已知長(zhǎng)方體ABCD—A′B′C′D′,化簡(jiǎn)下列向量表達(dá)式,并在圖中標(biāo)出化簡(jiǎn)結(jié)果的向量.(1)eq\o(AA′,\s\up6(→))-eq\o(CB,\s\up6(→));(2)eq\o(AA′,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(B′C′,\s\up6(→))。引申探究利用例1題圖,化簡(jiǎn)eq\o(AA′,\s\up6(→))+eq\o(A′B′,\s\up6(→))+eq\o(B′C′,\s\up6(→))+eq\o(C′A,\s\up6(→)).反思與感悟(1)首尾順次相接的若干向量之和,等于由起始向量的起點(diǎn)指向末尾向量的終點(diǎn)的向量,即eq\o(A1A2,\s\up6(→))+eq\o(A2A3,\s\up6(→))+eq\o(A3A4,\s\up6(→))+…+An-1An=eq\o(A1An,\s\up6(→)).(2)首尾順次相接的若干向量若構(gòu)成一個(gè)封閉圖形,則它們的和為0。如圖,eq\o(OB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DE,\s\up6(→))+eq\o(EF,\s\up6(→))+eq\o(FG,\s\up6(→))+eq\o(GH,\s\up6(→))+eq\o(HO,\s\up6(→))=0。(3)空間向量的減法運(yùn)算也可以看成是向量的加法運(yùn)算,即a-b=a+(-b).跟蹤訓(xùn)練1在如圖所示的平行六面體中,求證:eq\o(AC,\s\up6(→))+eq\o(AB′,\s\up6(→))+eq\o(AD′,\s\up6(→))=2eq\o(AC′,\s\up6(→))。類(lèi)型二用已知向量表示未知向量例2在平行六面體ABCD-A1B1C1D1中,已知eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AA1,\s\up6(→))=c.用向量a,b,c表示以下向量.(1)eq\o(AC1,\s\up6(→));(2)eq\o(BD1,\s\up6(→)).反思與感悟?qū)⒁粋€(gè)向量表示成n個(gè)向量的和或差,關(guān)鍵是根據(jù)向量的加減運(yùn)算將向量進(jìn)行拆分,一般可考慮從起點(diǎn)到終點(diǎn)構(gòu)成封閉的回路進(jìn)行運(yùn)算.跟蹤訓(xùn)練2在例2中,若已知A1C1與B1D1的交點(diǎn)為M。請(qǐng)用a,b,c表示eq\o(BM,\s\up6(→))。1.下列命題中,假命題是()A.同平面向量一樣,任意兩個(gè)空間向量都不能比較大小B.兩個(gè)相等的向量,若起點(diǎn)相同,則終點(diǎn)也相同C。只有零向量的模等于0D.空間中任意兩個(gè)單位向量必相等2。在平行六面體ABCD-A1B1C1D1中,與向量eq\o(AD,\s\up6(→))相等的向量共有()A。1個(gè)B。2個(gè)C.3個(gè)D.4個(gè)3。向量a,b互為相反向量,已知|b|=3,則下列結(jié)論正確的是()A。a=b B。a+b為實(shí)數(shù)0C。a與b方向相同 D.|a|=34。在正方體ABCD-A1B1C1D1中,已知下列各式:①(eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→)))+eq\o(CC1,\s\up6(→));②(eq\o(AA1,\s\up6(→))+eq\o(A1D1,\s\up6(→)))+eq\o(D1C1,\s\up6(→));③(eq\o(AB,\s\up6(→))+eq\o(BB1,\s\up6(→)))+B1C1;④(eq\o(AA1,\s\up6(→))+eq\o(A1B1,\s\up6(→)))+eq\o(B1C1,\s\up6(→)).其中運(yùn)算的結(jié)果為eq\o(AC1,\s\up6(→))的有________個(gè)。5.化簡(jiǎn):2eq\o(AB,\s\up6(→))+2eq\o(BC,\s\up6(→))+3eq\o(CD,\s\up6(→))+3eq\o(DA,\s\up6(→))+eq\o(AC,\s\up6(→))=________.空間向量加法、減法運(yùn)算的兩個(gè)技巧(1)巧用相反向量:向量減法的三角形法則是解決空間向量加法、減法的關(guān)鍵,靈活運(yùn)用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法則和平行四邊形法則進(jìn)行向量加、減法運(yùn)算時(shí),務(wù)必注意和向量、差向量的方向,必要時(shí)可采用空間向量的自由平移獲得運(yùn)算結(jié)果.提醒:完成作業(yè)第二章§2(一)
答案精析問(wèn)題導(dǎo)學(xué)知識(shí)點(diǎn)思考1如圖,空間中的兩個(gè)向量a,b相加時(shí),我們可以先把向量a,b平移到同一個(gè)平面α內(nèi),以任意點(diǎn)O為起點(diǎn)作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則eq\o(OC,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))=a+b,eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→))=b-a.思考2先將兩個(gè)向量平移到同一個(gè)平面,然后運(yùn)用平面向量的運(yùn)算法則(三角形法則、平行四邊形法則)運(yùn)算即可;圖1是三角形法則,圖2是平行四邊形法則.梳理(2)b+a題型探究例1解(1)eq\o(AA′,\s\up6(→))-eq\o(CB,\s\up6(→))=eq\o(AA′,\s\up6(→))-eq\o(DA,\s\up6(→))=eq\o(AA′,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\o(AD′,\s\up6(→)).(2)eq\o(AA′,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(B′C′,\s\up6(→))=(eq\o(AA′,\s\up6(→))+eq\o(AB,\s\up6(→)))+eq\o(B′C′,\s\up6(→))=eq\o(AB′,\s\up6(→))+eq\o(B′C′,\s\up6(→))=eq\o(AC′,\s\up6(→))。向量eq\o(AD′,\s\up6(→))、eq\o(AC′,\s\up6(→))如圖所示。引申探究解eq\o(AA′,\s\up6(→))+eq\o(A′B′,\s\up6(→))=eq\o(AB′,\s\up6(→)),eq\o(AB′,\s\up6(→))+eq\o(B′C′,\s\up6(→))=eq\o(AC′,\s\up6(→)),eq\o(AC′,\s\up6(→))+eq\o(C′A,\s\up6(→))=0.故eq\o(AA′,\s\up6(→))+eq\o(A′B′,\s\up6(→))+eq\o(B′C′,\s\up6(→))+eq\o(C′A,\s\up6(→))=0.跟蹤訓(xùn)練1證明∵平行六面體的六個(gè)面均為平行四邊形,∴eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)),eq\o(AB′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AA′,\s\up6(→)),eq\o(AD′,\s\up6(→))=eq\o(AD,\s\up6(→))+eq\o(AA′,\s\up6(→)),∴eq\o(AC,\s\up6(→))+eq\o(AB′,\s\up6(→))+eq\o(AD′,\s\up6(→))=(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))+(eq\o(AB,\s\up6(→))+eq\o(AA′,\s\up6(→)))+(eq\o(AD,\s\up6(→))+eq\o(AA′,\s\up6(→)))=2(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA′,\s\up6(→)))。又∵eq\o(AA′,\s\up6(→))=eq\o(CC′,\s\up6(→)),eq\o(AD,\s\up6(→))=eq\o(BC,\s\up6(→)),∴eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CC′,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(CC′,\s\up6(→))=eq\o(AC′,\s\up6(→)).∴eq\o(AC,\s\up6(→))+eq\o(AB′,\s\up6(→))+eq\o(AD′,\s\up6(→))=2eq\o(AC′,\s\up6(→)).例2解(1)eq\o(AC1,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CC1,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→))=a+b+c.(2)eq\o(BD1,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(DD1,\s\up6(→))=-eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→))=-a+b+c.跟蹤訓(xùn)練2解∵eq\o(B1D1,\s\up6(→))=eq\o(BD,\s\up6(→))=eq\o(AD,\s\up6(→))-eq\o(AB,\s\up6(→))=b-a.又∵eq\o(B1M,\s\up6(→))=eq\f(1,2)eq\o(B1D1,\s\up6(→)),∴eq\o(B1M,\s\up6(→))=eq\f(1,2)eq\o(B1D1,\s\up6(→))=eq\f(1,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度創(chuàng)業(yè)投資機(jī)構(gòu)投資入股合作協(xié)議范本3篇
- 2025年度心理健康輔導(dǎo)合同范本全新發(fā)布3篇
- 2025年度消防控制系統(tǒng)安裝及調(diào)試合同范本3篇
- 2025年度技師學(xué)院體育設(shè)施建設(shè)與運(yùn)營(yíng)合同3篇
- 品牌與市場(chǎng)細(xì)分
- 2024年眼鏡店員工聘用協(xié)議標(biāo)準(zhǔn)版版B版
- 2024年版工業(yè)配件采購(gòu)協(xié)議總覽
- 2024年服務(wù)式辦公室租賃合同:無(wú)固定期限3篇
- 傳統(tǒng)節(jié)日演講稿
- 2024年直供飲用水買(mǎi)賣(mài)合同版B版
- 質(zhì)量保證的基本原則與方法
- 護(hù)理專(zhuān)業(yè)人才培養(yǎng)方案論證報(bào)告
- 我的家鄉(xiāng)武漢
- 眼鏡制造業(yè)灌膠機(jī)市場(chǎng)前景與機(jī)遇分析
- 智慧審計(jì)平臺(tái)項(xiàng)目匯報(bào)
- 湖北省天門(mén)市2022-2023學(xué)年三年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
- 《建筑賦比興》一些筆記和摘錄(上)
- 【服裝企業(yè)比音勒芬服飾的財(cái)務(wù)問(wèn)題分析(基于杜邦分析)9700字論文】
- 電氣工程及其自動(dòng)化低壓電器中繼電器應(yīng)用
- 實(shí)驗(yàn)九(b)液體表面張力系數(shù)的測(cè)定(用毛細(xì)管法)
- 全球機(jī)場(chǎng)三字碼、四字碼
評(píng)論
0/150
提交評(píng)論