版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是虛數(shù)單位,則()A. B. C. D.2.已知是圓心為坐標(biāo)原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉(zhuǎn)到交圓于點,則的最大值為()A.3 B.2 C. D.3.復(fù)數(shù)的模為().A. B.1 C.2 D.4.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.5.已知集合,,則等于()A. B. C. D.6.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.7.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.8.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}9.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.210.已知實數(shù),則下列說法正確的是()A. B.C. D.11.為虛數(shù)單位,則的虛部為()A. B. C. D.12.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.14.設(shè)復(fù)數(shù)滿足,則_________.15.已知隨機變量服從正態(tài)分布,若,則_________.16.如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,,則雙曲線的離心率是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.18.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.19.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。20.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.21.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實數(shù)的取值范圍.22.(10分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.2、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.3、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.4、C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結(jié)果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.5、B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.6、C【解析】
設(shè),,,,設(shè)直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.7、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠(yuǎn),可得,選項成立;,,可知比離對稱軸遠(yuǎn),選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.8、D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎(chǔ)題.9、D【解析】
由拋物線方程可得焦點坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標(biāo),即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點橫坐標(biāo)的和.10、C【解析】
利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.11、C【解析】
利用復(fù)數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的運算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯題.12、B【解析】
每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項歸納出遞推關(guān)系,從而可確定數(shù)列的一些項.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎(chǔ)題.14、.【解析】
利用復(fù)數(shù)的運算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點睛】本題考查了復(fù)數(shù)的運算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.15、0.4【解析】
因為隨機變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態(tài)分布所以正態(tài)曲線關(guān)于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)三角形中位線證得,結(jié)合判斷出垂直平分,由此求得的值,結(jié)合求得的值.【詳解】∵,∴為中點,,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)設(shè)中點為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點為,連接、,因為,所以.又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因為,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜邊的中點,所以點是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點即為球心,記的中點為點,則.由與相似可得,所以.所以三棱錐外接球的體積為.【點睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.18、(1);(2)【解析】
(1)由正弦定理可得,,化簡并結(jié)合,可求得三者間的關(guān)系,代入余弦定理可求得;(2)由(1)可求得,再結(jié)合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因為,所以,整理得:.因為,所以,所以.由余弦定理可得.(2)由(1)知,則,因為的面積是,所以,即,解得,則.故的周長為:.【點睛】本題考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.19、(1);(2)存在定點,見解析【解析】
(1)設(shè)動點,則,利用,求出曲線的方程.(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時,,;當(dāng)時,,。所以存在定點,使得直線與斜率之積為定值?!军c睛】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計算能力,屬于中檔題.20、(1)見解析;(2)【解析】
(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個法向量.注意計算要仔細(xì)、認(rèn)真.≌21、(1)(2)【解析】
(1)零點分段去絕對值解不等式即可(2)由題在上有解,去絕對值分離變量a即可.【詳解】(1)不等式,即等價于或或解得,所以原不等式的解集為;(2)當(dāng)時,不等式,即,所以在上有解即在上有解,所以,.【點睛】本題考查絕對值不等式解法,不等式有解求參數(shù),熟記零點分段,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品入廠合同范例
- 簡易英文租船合同范例
- 租樹合同范例
- 林權(quán)轉(zhuǎn)讓合同合同范例
- 私人租賃山地合同范例
- 路沿石合同范例
- 預(yù)估采購合同范例
- 垃圾分類清運合同范例
- 2025版電子租房合同
- 2025勞務(wù)合同范文
- 河北省對口升學(xué)農(nóng)林類農(nóng)學(xué)方向考核試題及答案
- 心衰的健康宣教內(nèi)容
- 2024年學(xué)習(xí)解讀廉政廉潔專題教育課件
- 焊接規(guī)范培訓(xùn)課件焊接工藝參數(shù)的確定與調(diào)整
- 北師大版八年級數(shù)學(xué)(上冊)完全復(fù)習(xí)知識點+典型例題
- 水質(zhì)自檢報告
- 能源與動力工程生涯發(fā)展展示
- 園林行業(yè)市場報告分析
- 2024年總經(jīng)理年會致辭2篇
- 人事入轉(zhuǎn)調(diào)離分析報告
- 一般現(xiàn)在時練習(xí)題(共10篇)
評論
0/150
提交評論