版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省鄭州市第一〇六中學2023年高二上數(shù)學期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.概率論起源于賭博問題.法國著名數(shù)學家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎2.大數(shù)學家阿基米德的墓碑上刻有他最引以為豪的數(shù)學發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.3.設(shè)點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.34.已知三棱柱中,,,D點是線段上靠近A的一個三等分點,則()A. B.C. D.5.已知數(shù)列中,,則()A. B.C. D.6.若數(shù)列對任意滿足,下面選項中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列7.()A. B.C. D.8.在四棱錐中,分別為的中點,則()A. B.C. D.9.已知動點的坐標滿足方程,則的軌跡方程是()A. B.C. D.10.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.11.已知圓的方程為,則圓心的坐標為()A. B.C. D.12.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,將數(shù)列按如下方式排列成新數(shù)列:,,,,,,,,,…,,….則新數(shù)列的前70項和為______14.已知函數(shù)有三個零點,則正實數(shù)a的取值范圍為_________15.如圖,長方體中,,,,,分別是,,的中點,則異面直線與所成角為__.16.如圖,在長方體ABCD—A1B1C1D1,AB=BC=2,CC1=1,則直線AD1與B1D所成角的余弦值為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比數(shù)列,求k18.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長.19.(12分)已知的三個頂點是,,(1)求邊所在的直線方程;(2)求經(jīng)過邊的中點,且與邊平行的直線的方程20.(12分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:21.(12分)設(shè)曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.22.(10分)已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標為2.(1)求拋物線的標準方程;(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.2、C【解析】設(shè)球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設(shè)球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側(cè)面積為:,圓柱的表面積為:所以其表面積之比為:故選:C3、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.4、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計算即可.【詳解】在三棱柱中,滿足,且,則,,D點是線段上靠近A的一個三等分點,則,由向量的減法運算得,.故選:A【點睛】關(guān)鍵點點睛:在三棱柱中,,由向量的減法運算得,再展開利用數(shù)量積運算.5、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.6、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當時,數(shù)列是等差數(shù)列,當時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D7、B【解析】根據(jù)微積分基本定理即可直接求出答案.【詳解】故選:B.8、A【解析】結(jié)合空間幾何體以及空間向量的線性運算即可求出結(jié)果.【詳解】因為分別為的中點,則,,,故選:A.9、C【解析】此方程表示點到點的距離與到點的距離之差為8,而這正好符合雙曲線的定義,點的軌跡是雙曲線的右支,,的軌跡方程是,故選C.10、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點公式及點可求a的值.【詳解】設(shè),聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.11、A【解析】將圓的方程配成標準方程,可求得圓心坐標.【詳解】圓的標準方程為,圓心的坐標為.故選:A.12、C【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##2.9375【解析】先根據(jù)題干條件得到,再利用錯位相減法求前64項和,最后求出前70項和.【詳解】①,當時,;當時,②,①-②得:,即又滿足,所以由,得令,則,兩式相減得,則所以新數(shù)列的前70項和為故答案為:14、【解析】求導易得函數(shù)有兩個極值點和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個極值點和,,,若函數(shù)有三個零點,必有解得或故答案為:15、【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,2,,,1,,,,設(shè)異面直線與所成角為,,異面直線與所成角為.故答案為:.16、【解析】以為原點,所在直線為軸的正方向建立空間直角坐標系,求出,的坐標,由向量夾角公式可得答案.【詳解】以為原點,所在直線為軸的正方向建立如圖的坐標系,∵AB=BC=2,CC1=1,∴,,,,則,,則,,則cos<,>==,即AD1與B1D所成角的余弦值為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)Sn=n2(2)11【解析】(1)由等差數(shù)列前n項和公式與下標和性質(zhì)先求,然后結(jié)合可解;(2)由(1)中結(jié)論和已知列方程可解.【小問1詳解】由,解得,又∵,∴,,∴【小問2詳解】∵S3,S17–S16,Sk成等比數(shù)列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1118、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.19、(1)(2)【解析】(1)利用直線方程的兩點式求解;(2)先求得AB的中點,再根據(jù)直線與AC平行,利用點斜式求解.【小問1詳解】因為,,所以邊所在的直線方程為,即;【小問2詳解】因為,,所以AB的中點為:,又,所以直線方程為:,即.20、(1)答案見詳解(2),證明見解析【解析】(1)求導得,,分類討論參數(shù)a的范圍即可判斷單調(diào)區(qū)間;(2)設(shè),,聯(lián)立整理得,構(gòu)造得,構(gòu)造函數(shù),結(jié)合導數(shù)判斷單調(diào)性,進而得證.小問1詳解】由,,可得,當時,,所以在上單調(diào)遞增;當時,令,得,令,得所以在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設(shè).設(shè),,則則,即,整理得,所以,設(shè),則,所以在上單調(diào)遞減,所以,所以,即.21、(1)(2)證明見解析(3)【解析】(1)求導,根據(jù)導數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導數(shù),分類討論導數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調(diào)遞減,當時,,單調(diào)遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設(shè),(),則,當時,由得,此時,此時在時單調(diào)遞增,,適合題意;當時,,此時在時單調(diào)遞增,,適合題意;當時,,此時,此時在時單調(diào)遞增,,適合題意;當時,,此時在內(nèi),,在內(nèi),,故,顯然時,,不滿足當恒成立,綜上述:.22、(1);(2)見解析.【解析】(1)涉及中點弦,用點差法處理即可求得,進而求得拋物線方程;(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè),直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教A版山西省大同市2023-2024學年高二上學期期末質(zhì)量監(jiān)測數(shù)學試題
- 林徽因課件教案
- 娜塔莎課件高中
- 2024年吉林省中考生物真題卷及答案解析
- 模板 卡通 課件
- 西京學院《新媒體數(shù)據(jù)挖掘?qū)嵱枴?022-2023學年期末試卷
- 西京學院《軟件測試技術(shù)》2021-2022學年期末試卷
- 測樹葉的面積
- 西京學院《機床電氣與技術(shù)》2022-2023學年期末試卷
- 西華師范大學《綜合自然地理》2022-2023學年第一學期期末試卷
- GB/T 30893-2024雨生紅球藻粉
- 2024-2030年生活用紙產(chǎn)業(yè)規(guī)劃專項研究報告
- 2024-2025學年江蘇省揚州市邗江區(qū)梅嶺中學七年級(上)第一次月考數(shù)學試卷(含答案)
- 2024年制造業(yè)生產(chǎn)基地租賃協(xié)議模板版
- 自建房與鄰居商量間距協(xié)議書范文
- 高空拋物安全宣傳教育課件
- (必會)軍隊文職(藥學)近年考試真題題庫(含答案解析)
- 2024湖北武漢市洪山科技投資限公司招聘11人高頻難、易錯點500題模擬試題附帶答案詳解
- 北師大版(2024新版)七年級上冊數(shù)學期中模擬測試卷 3套(含答案解析)
- 人教版六年級數(shù)學上冊第一單元分數(shù)乘法單元達標測試卷
- 課題1 質(zhì)量守恒定律-九年級化學上冊同步高效課堂(人教版2024)
評論
0/150
提交評論