新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.3等比數(shù)列及其前n項和(練)解析版_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.3等比數(shù)列及其前n項和(練)解析版_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.3等比數(shù)列及其前n項和(練)解析版_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.3等比數(shù)列及其前n項和(練)解析版_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.3等比數(shù)列及其前n項和(練)解析版_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題7.3等比數(shù)列及其前n項和練基礎(chǔ)練基礎(chǔ)1.(2021·全國高考真題(文))記SKIPIF1<0為等比數(shù)列SKIPIF1<0的前n項和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.7 B.8 C.9 D.10【答案】A【解析】根據(jù)題目條件可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,從而求出SKIPIF1<0,進一步求出答案.【詳解】∵SKIPIF1<0為等比數(shù)列SKIPIF1<0的前n項和,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.故選:A.2.(2021·山東濟南市·)已知Sn是遞增的等比數(shù)列{an}的前n項和,其中S3=SKIPIF1<0,a32=a4,則a5=()A.SKIPIF1<0 B.SKIPIF1<0 C.8 D.16【答案】C【解析】設(shè)等比數(shù)列的公比為q,根據(jù)題意列方程,解出SKIPIF1<0和q即可.【詳解】解:設(shè)遞增的等比數(shù)列{an}的公比為SKIPIF1<0,且qSKIPIF1<01,∵S3=SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0(1+q+q2)=SKIPIF1<0,SKIPIF1<0q4=SKIPIF1<0q3,解得SKIPIF1<0=SKIPIF1<0,q=2;SKIPIF1<0=2,q=SKIPIF1<0(舍去).則SKIPIF1<0=SKIPIF1<0=8.故選:C.3.(2021·重慶高三其他模擬)設(shè)等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)等比數(shù)列SKIPIF1<0公比為SKIPIF1<0,由SKIPIF1<0結(jié)合已知條件求SKIPIF1<0、SKIPIF1<0,再利用等比數(shù)列前n項和公式求SKIPIF1<0.【詳解】設(shè)等比數(shù)列SKIPIF1<0公比為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0.故選:C4.(2021·合肥市第六中學(xué)高三其他模擬(理))若等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為q,根據(jù)等比數(shù)列的通項公式建立方程組,解之可得選項.【詳解】設(shè)等比數(shù)列SKIPIF1<0的公比為q,則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故選:A.5.(2020·河北省曲陽縣第一高級中學(xué)高一期末)中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中記載了這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:有一個人走了378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地,問此人第二天走了()A.6里 B.24里 C.48里 D.96里【答案】D【解析】根據(jù)題意,記每天走的路程里數(shù)為,可知是公比的等比數(shù)列,由,得,解可得,則;即此人第二天走的路程里數(shù)為96;故選:D.6.(2021·江蘇南通市·高三其他模擬)已知等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,前SKIPIF1<0項和為SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】D【解析】由SKIPIF1<0可得出SKIPIF1<0,取SKIPIF1<0,由SKIPIF1<0,進而判斷可得出結(jié)論.【詳解】若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以,數(shù)列SKIPIF1<0為遞增數(shù)列,若SKIPIF1<0,SKIPIF1<0,所以,“SKIPIF1<0”是“SKIPIF1<0”的既不充分也不必要條件.故選:D.7.(2021·黑龍江大慶市·大慶實驗中學(xué)高三其他模擬(文))在數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【解析】由SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0且SKIPIF1<0,得出數(shù)列SKIPIF1<0構(gòu)成以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,結(jié)合等比數(shù)列的求和公式,即可求解.【詳解】由SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0構(gòu)成以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0.故答案為:SKIPIF1<0.8.(2021·浙江杭州市·杭州高級中學(xué)高三其他模擬)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0_____,SKIPIF1<0_______.【答案】SKIPIF1<0SKIPIF1<0【解析】利用SKIPIF1<0求通項公式,再求出SKIPIF1<0.【詳解】對于SKIPIF1<0,當n=1時,有SKIPIF1<0,解得:SKIPIF1<01;當SKIPIF1<0時,有SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0為等比數(shù)列,SKIPIF1<0,所以SKIPIF1<0.故答案為:1,SKIPIF1<0.9.(2021·浙江杭州市·杭州高級中學(xué)高三其他模擬)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0________,SKIPIF1<0________.【答案】SKIPIF1<0SKIPIF1<0【解析】根據(jù)SKIPIF1<0,求出數(shù)列的通項公式,再代入求出SKIPIF1<0.【詳解】解:因為SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0于是SKIPIF1<0是首項為SKIPIF1<0,公比為2的等比數(shù)列,所以SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<0;SKIPIF1<0;10.(2018·全國高考真題(文))等比數(shù)列an中,a(1)求an(2)記Sn為an的前n項和.若Sm【答案】(1)an=(?2)(2)m=6.【解析】(1)設(shè){an}的公比為q由已知得q4=4q2,解得q=0(舍去),故an=(?2)(2)若an=(?2)n?1,則Sn若an=2n?1,則Sn=2綜上,m=6.練提升TIDHNEG練提升TIDHNEG1.(遼寧省凌源二中2018屆三校聯(lián)考)已知數(shù)列為等比數(shù)列,且,則()A.B.C.D.【答案】B【解析】由等比數(shù)列的性質(zhì)可得:,,結(jié)合可得:,結(jié)合等比數(shù)列的性質(zhì)可得:,即:.本題選擇B選項.2.(2021·全國高三其他模擬(文))如圖,“數(shù)塔”的第SKIPIF1<0行第SKIPIF1<0個數(shù)為SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0).將這些數(shù)依次排成一列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,記作數(shù)列SKIPIF1<0,設(shè)SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0()A.46 B.47 C.48 D.49【答案】C【解析】根據(jù)“數(shù)塔”的規(guī)律,可知第SKIPIF1<0行共有SKIPIF1<0個數(shù),利用等比數(shù)列求和公式求出第SKIPIF1<0行的數(shù)字之和,再求出前SKIPIF1<0行的和,即可判斷SKIPIF1<0取到第幾行,再根據(jù)每行數(shù)字個數(shù)成等差數(shù)列,即可求出SKIPIF1<0;【詳解】解:“數(shù)塔”的第SKIPIF1<0行共有SKIPIF1<0個數(shù),其和為SKIPIF1<0,所以前SKIPIF1<0行的和為SKIPIF1<0故前SKIPIF1<0行所有數(shù)學(xué)之和為SKIPIF1<0,因此只需要加上第10行的前3個數(shù)字1,2,4,其和為SKIPIF1<0,易知“數(shù)塔”前SKIPIF1<0行共有SKIPIF1<0個數(shù),所以SKIPIF1<0故選:C3.(2021·江蘇高三其他模擬)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,則下列結(jié)論中正確的有()A.SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】將遞推公式兩邊同時取指數(shù),變形得到SKIPIF1<0,構(gòu)造等比數(shù)列可證SKIPIF1<0為等比數(shù)列,求解出SKIPIF1<0通項公式則可判斷A選項;根據(jù)SKIPIF1<0判斷B選項;根據(jù)SKIPIF1<0的通項公式以及對數(shù)的運算法則計算SKIPIF1<0的正負并判斷C選項;將SKIPIF1<0的通項公式放縮得到SKIPIF1<0,由此進行求和并判斷D選項.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0在SKIPIF1<0時單調(diào)遞增,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,所以SKIPIF1<0是遞增數(shù)列,故A正確;因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0不是等比數(shù)列,故B錯誤.因為SKIPIF1<0SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,從而SKIPIF1<0,于是,SKIPIF1<0,故C正確.因為SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:ACD.4.(2019·浙江高三期末)數(shù)列的前n項和為,且滿足,Ⅰ求通項公式;Ⅱ記,求證:.【答案】Ⅰ;Ⅱ見解析【解析】Ⅰ,當時,,得,又,,數(shù)列是首項為1,公比為2的等比數(shù)列,;證明:Ⅱ,,時,,,同理:,故:.5.(2021·河北衡水中學(xué)高三三模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0,求出SKIPIF1<0;(2)是否存在實數(shù)SKIPIF1<0,SKIPIF1<0使SKIPIF1<0為等比數(shù)列?若存在,求出SKIPIF1<0,若不存在,說明理由.【答案】(1)SKIPIF1<0;(2)存在,SKIPIF1<0.【解析】(1)將SKIPIF1<0代入,由遞推關(guān)系求出通項公式,并檢驗當SKIPIF1<0時是否滿足,即可得到結(jié)果;(2)先假設(shè)存在實數(shù)SKIPIF1<0,SKIPIF1<0滿足題意,結(jié)合已知條件求出滿足數(shù)列SKIPIF1<0是等比數(shù)列的實數(shù)SKIPIF1<0,SKIPIF1<0的值,運用分組求和法求出SKIPIF1<0的值.【詳解】(1)由題可知:當SKIPIF1<0時有:SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0滿足上式,故SKIPIF1<0.(2)假設(shè)存在實數(shù)SKIPIF1<0,SKIPIF1<0滿足題意,則當SKIPIF1<0時,由題可得:SKIPIF1<0,和題設(shè)SKIPIF1<0對比系數(shù)可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.此時SKIPIF1<0,SKIPIF1<0,故存在SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0是首項為4,公比為2的等比數(shù)列.從而SKIPIF1<0.所以SKIPIF1<0.6.(2021·遼寧本溪市·高二月考)已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為實數(shù)).(1)求證:SKIPIF1<0是等比數(shù)列;(2)求數(shù)列SKIPIF1<0的通項公式;(3)若SKIPIF1<0是遞增數(shù)列,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)證明見解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【解析】(1)由SKIPIF1<0,變形為SKIPIF1<0,再利用等比數(shù)列的定義證明;(2)由(1)的結(jié)論,利用等比數(shù)列的通項公式求解;(3)根據(jù)SKIPIF1<0是遞增數(shù)列,由SKIPIF1<0,SKIPIF1<0恒成立求解.【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是等比數(shù)列.(2)由SKIPIF1<0,公比為2,得SKIPIF1<0,所以SKIPIF1<0.(3)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0是遞增數(shù)列,所以SKIPIF1<0成立,故SKIPIF1<0,SKIPIF1<0成立,即SKIPIF1<0,SKIPIF1<0成立,因為SKIPIF1<0是遞減數(shù)列,所以該數(shù)列的最大項是SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.7.(2021·河南商丘市·高二月考(理))在如圖所示的數(shù)陣中,從任意一個數(shù)開始依次從左下方選出來的數(shù)可組成等差數(shù)列,如:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…;依次選出來的數(shù)可組成等比數(shù)列,如:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,….SKIPIF1<0記第SKIPIF1<0行第SKIPIF1<0個數(shù)為SKIPIF1<0.(Ⅰ)若SKIPIF1<0,寫出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的表達式,并歸納出SKIPIF1<0的表達式;(Ⅱ)求第SKIPIF1<0行所有數(shù)的和SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(Ⅱ)SKIPIF1<0.【解析】(I)由數(shù)陣寫出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由此可歸納出SKIPIF1<0.(II)SKIPIF1<0SKIPIF1<0,利用錯位相減法求得結(jié)果.【詳解】(Ⅰ)由數(shù)陣可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由此可歸納出SKIPIF1<0.(Ⅱ)SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,錯位相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0.8.(2021·山東煙臺市·高三其他模擬)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,按照如下規(guī)律構(gòu)造新數(shù)列SKIPIF1<0:SKIPIF1<0,求SKIPIF1<0的前2n項和.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)數(shù)列SKIPIF1<0的前2n項和為SKIPIF1<0.【解析】(1)由SKIPIF1<0可得SKIPIF1<0可得答案;(2)由SKIPIF1<0得SKIPIF1<0,兩式相除可得數(shù)列SKIPIF1<0的偶數(shù)項構(gòu)成等比數(shù)列,再由(1)可得數(shù)列SKIPIF1<0的前2n項的和.【詳解】(1)由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又當SKIPIF1<0時,SKIPIF1<0,適合上式.所以SKIPIF1<0,SKIPIF1<0.(2)因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.所以數(shù)列SKIPIF1<0的偶數(shù)項構(gòu)成以SKIPIF1<0為首項?2為公比的等比數(shù)列.故數(shù)列SKIPIF1<0的前2n項的和SKIPIF1<0,SKIPIF1<0所以數(shù)列SKIPIF1<0的前2n項和為SKIPIF1<0.9.(2019·浙江高考模擬)已知數(shù)列中,,(1)令,求證:數(shù)列是等比數(shù)列;(2)令,當取得最大值時,求的值.【答案】(I)見解析(2)最大,即【解析】(1)兩式相減,得∴即:∴數(shù)列是以2為首項,2為公比的等比數(shù)列(2)由(1)可知,即也滿足上式令,則,∴最大,即10.(2021·浙江高三其他模擬)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求使SKIPIF1<0成立(SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù))的最大整數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)最大值為44.【解析】(1)由題得數(shù)列SKIPIF1<0是等比數(shù)列,即求出數(shù)列SKIPIF1<0的通項;由題得SKIPIF1<0是一個以SKIPIF1<0為首項,以1為公差的等差數(shù)列,即得數(shù)列SKIPIF1<0的通項公式;(2)先求出SKIPIF1<0,再求出SKIPIF1<0即得解.【詳解】解:(1)由SKIPIF1<0得SKIPIF1<0,所以數(shù)列SKIPIF1<0是等比數(shù)列,公比為SKIPIF1<0,解得SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是一個以SKIPIF1<0為首項,以1為公差的等差數(shù)列,所以SKIPIF1<0,解得SKIPIF1<0.(2)由SKIPIF1<0得SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為單調(diào)遞減且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的SKIPIF1<0的最大值為44;當SKIPIF1<0時,SKIPIF1<0的SKIPIF1<0的最大值為43;故SKIPIF1<0的SKIPIF1<0的最大值為44.練真題TIDHNEG練真題TIDHNEG1.(2021·全國高考真題(理))等比數(shù)列SKIPIF1<0的公比為q,前n項和為SKIPIF1<0,設(shè)甲:SKIPIF1<0,乙:SKIPIF1<0是遞增數(shù)列,則()A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件【答案】B【解析】當SKIPIF1<0時,通過舉反例說明甲不是乙的充分條件;當SKIPIF1<0是遞增數(shù)列時,必有SKIPIF1<0成立即可說明SKIPIF1<0成立,則甲是乙的必要條件,即可選出答案.【詳解】由題,當數(shù)列為SKIPIF1<0時,滿足SKIPIF1<0,但是SKIPIF1<0不是遞增數(shù)列,所以甲不是乙的充分條件.若SKIPIF1<0是遞增數(shù)列,則必有SKIPIF1<0成立,若SKIPIF1<0不成立,則會出現(xiàn)一正一負的情況,是矛盾的,則SKIPIF1<0成立,所以甲是乙的必要條件.故選:B.2.(2020·全國高考真題(文))記Sn為等比數(shù)列{an}的前n項和.若a5–a3=12,a6–a4=24,則SKIPIF1<0=()A.2n–1 B.2–21–n C.2–2n–1 D.21–n–1【答案】B【解析】設(shè)等比數(shù)列的公比為SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0.故選:B.3.(2019·全國高考真題(文))已知各項均為正數(shù)的等比數(shù)列的前4項和為15,且,則()A.16 B.8 C.4 D.2【答案】C【解析】設(shè)正數(shù)的等比數(shù)列{an}的公比為,則,解得,,故選C.4.(2019·全國高考真題(文))記Sn為等比數(shù)列{an}的前n項和.若,則S4=___________.【答案】.【解析】設(shè)等比數(shù)列的公比為,由已知,即解得,所以.5.(2020·海南省高考真題)已知公比大于SKIPIF1<0的等比數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為q(q>1),則SKIPIF1<0,整理可得:SKIPIF1<0,SKIPIF1<0,數(shù)列的通項公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論