版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SurfaceTopography:MetrologyandProperties
PAPER?OPENACCESS
Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
Tocitethisarticle:AlexandraKaramitrouetal2022Surf.Topogr.:Metrol.Prop.10044001
Viewthe
articleonline
forupdatesandenhancements.
Youmayalsolike
UnravellingtheroleofironandmanganeseoxidesincolouringLateAntiqueglassbymicro-XANESandmicro-XRFspectroscopies
FrancescaGherardi,ClémentHole,EwanCampbelletal.
GeomagneticandgeoelectricalprospectionforburiedarchaeologicalremainsontheUpperCityofAmorium,aByzantinecityinmidwesternTurkeyYunusLeventEkinci,?alayanBalkaya,Ayselerenetal.
UnmannedAerialVehicle(UAV)DataAcquisitionforArchaeologicalSiteIdentificationandMapping
WHandayani,EAAyuningtyas,FSCandraRetal.
ThiscontentwasdownloadedfromIPaddress11on22/04/2024at16:36
Surf.Topogr.:Metrol.Prop.10(2022)044001
/10.1088/2051-672X/ac9492
OPENACCESS
RECEIVED
5February2022
REVISED
25August2022
ACCEPTEDFORPUBLICATION
23September2022
PUBLISHED
3October2022
Originalcontentfromthisworkmaybeusedunderthetermsofthe
Creative
CommonsAttribution4.0
licence
.
Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.
PAPER
Towardstheuseofarti?cialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
AlexandraKaramitrou
1
,?
,FraserSturt
1
,PetrosBogiatzis
2
andDavidBeresford-Jones
3
1UniversityofSouthampton,DepartmentofArchaeology,UnitedKingdom
2OceanandEarthScience,NationalOceanographyCentreSouthampton,UniversityofSouthampton,UnitedKingdom
3UniversityofCambridge,DepartmentofArchaeology,UnitedKingdom
?Authortowhomanycorrespondenceshouldbeaddressed.
E-mail:
a.karamitrou@soton.ac.uk
Keywords:archaeology,machinelearning,arti?cialintelligence,convolutionalneuralnetworks,segnetSupplementarymaterialforthisarticleisavailable
online
AbstractWhileremotesensingdatahavelongbeenwidelyusedinarchaeologicalprospectionoverlargeareas,thetaskofexaminingsuchdataistimeconsumingandrequiresexperiencedandspecialistanalysts.However,recenttechnologicaladvancesinthe?eldofarti?cialintelligence(AI),andinparticulardeeplearningmethods,openpossibilitiesfortheautomatedanalysisoflargeareasofremotesensingdata.Thispaperexaminestheapplicabilityandpotentialofsuperviseddeeplearningmethodsforthedetectionandmappingofdifferentkindsofarchaeologicalsitescomprisingfeaturessuchaswallsandlinearorcurvilinearstructuresofdifferentdimensions,spectralandgeometricalproperties.Ourworkdeliberatelyusesopen-sourceimagerytodemonstratetheaccessibilityofthesetools.OneofthemainchallengesfacingAIapproacheshasbeenthattheyrequirelargeamountsoflabeleddatatoachievehighlevelsofaccuracysothatthetrainingstagerequiressigni?cantcomputationalresources.Ourresultsshow,however,thatevenwithrelativelylimitedamountsofdata,simpleeight-layer,fullyconvolutionalnetworkcanbetrainedef?cientlyusingminimalcomputationalresources,toidentifyandclassifyarchaeologicalsitesandsuccessfullydistinguishthemfromfeatureswithsimilarcharacteristics.Byincreasingthenumberoftrainingsetsandswitchingtotheuseofhigh-performancecomputingtheaccuracyoftheidenti?edareasincreases.Weconcludebydiscussingthefuturedirectionsandpotentialofsuchmethodsinarchaeologicalresearch.
Introduction
Analysisofaerialimageryrevolutionizedarchaeologyintheearlytwentiethcentury,exponentiallyincreas-ingthenumberofknownsites,allowinglargeareastoberapidlysurveyedandgivingaccesstoremoteregions(Reeves
1936
,BewleyandRaczkowski
2002
;Mossunetal
2013
;Lambers
2018
).Forexample,asearchforscienti?cpublicationsrelatedwithArchae-ologyandRemoteSensingusingtheDimensionsscienti?cresearchdatabasereturns2,732articleson2013,5,172on2018and14,323in2021(
https://app.
dimensions.ai
;accessedinMay2022).
Withtheintroductionofawiderrangeofairborne(i.e.,mannedaircraftanddrones)andspace-baseddata,includingpassivehighspatialresolutionopticalsensors,multispectralandhyperspectralsensors,light
detectionandranging(LIDAR),Syntheticapertureradar(SAR),thermalsensorsandgeophysicalimages,theamountofdataavailabletoarchaeologistshasalsoincreasedexponentiallyinrecentyears(e.g.,Chietal
2016
;Tamiminiaetal
2020
).Thesedataholdsig-ni?cantpotentialtotransformourunderstandingofthearchaeologicalrecord,butalsoposeasigni?cantchallengewithregardstotheamountoftimeanalysiswouldtakeusingtraditionalhuman-ledimageanaly-sismethods.
Arti?cialIntelligence(AI)offersapotentialbypasstothisbottleneckandthereforesubstantiallyreducetherequiredhumanlabor.AIdescribestheabilityofcomputerstoperformtasksandreachingdecisionsthroughlearningeitherdirectlyfromthedata(unsu-pervisedmethods)orfrompastexperiencewherethecorrectoutcomeisprovided(supervisedmethods),
?2022TheAuthor(s).PublishedbyIOPPublishingLtd
Surf.Topogr.:Metrol.Prop.10(2022)044001
AKaramitrouetal
PAGE
10
imitatinghumanintelligence(e.g.,Dey,
2016
;Copeland
2020
).
Overthepastthreedecades,applicationsofmachinelearning(ML)methodshaveseensigni?cantincreaseinArchaeology.MLalgorithmssuchassup-portvectormachine(CortesandVapnik
1995
;Kaoetal
2004
)randomforests(Ho
1995
;Ho
1998
),K-means(Caoetal
2009
;JinandHan,
2011
;Qietal
2017
)andothersimilarapproacheshavebeenwidelyadoptedwithconsiderablesuccessindetectingorclas-sifyingarchaeologicalsites,andartifacts(e.g.,KintighandAmmerman
1982
;Baxter
2009
;MenzeandUr
2012
;Floresetal
2019
;Orengoetal
2020
).Thesemethods,oftenreferredtoastraditionalMLalgo-rithms,requirethecarefulselectionofinputfeatures(e.g.,variousspectralindicesinsatelliteimaging)byhuman-experts,thatareimportantfortheoutcome.Thenthroughaniterativeoptimizationprocessbytheinputofexemplardatathealgorithmistrainedbaseduponmultivariatestatisticsandprogressivelyimprovesitsperformance.Sinceitrequiresthedeter-minationandthepriorcalculationofarangeofpossi-blestatisticallysigni?cantinputfeatures,itinevitablysuffersfromalevelofbiasasalthoughthetrainingprocedurecanpointoutwhichfromthefeaturesarestatisticallyinsigni?cant,itcannotsuggest,orextractfeaturesdifferentthantheprovidedones.Also,therelativelylimitednumberofthefeaturesinmostappli-cationsoftencannotfullydescribethetargetsatdifferentsituationsorenvironmentalconditions.Therefore,theapplicabilityofthesealgorithmsisoftenlimitedtospeci?ccasesandrestrictstheidenti?cationtofeatureswithlimitedspectralandgeometricvariations.
Intheearly2000sanewmachinelearningtechnol-ogyemergedknownasDeepLearning(DL)basedonArti?cialNeuralNetworks(ANN),andinthecaseofimageapplications,ConvolutionalNeuralNetworks(CNNs).ThisnewtechnologywaslargelybasedontheseminalworkofFukushima(
1980
)aswellasHubelandWiesel(
1959
)thatintroducedthe‘neocognitron’(Fukushima
1980
;
1983
;2003)andestablishedtheuseofconvolutionalanddown-samplinglayers.In1986,RinaDecherwasoneofthe?rsttousetheterm‘deeplearning’tothemachinelearningcommunity,inwhich‘deep’wasusedtodescribetheuseofmultiplelayersinanetwork.Later,Waibel(
1987
)proposedthetimedelayneuralnetwork(TDNN),oneofthe?rstconvolutionalnetworksfollowedbyLeCunetal(
1989
)whoappliedthatinahandwrittencharacterrecognitionproblemusinga7-levelConvolutionalNeuralNetowork(CNN),calledLeNet-5(LeCunetal
1998
).Asigni?cantadvantageofdeeplearningmeth-odsisthatthefeatureextractionandselectionstageisperformedbythelearningalgorithmautomaticallyandnotbyaperson.Yet,thisusuallyrequiressig-ni?cantamountsoflabeleddataandconsiderablecomputationalresourcesforthetrainingprocess.TheutilizationofGPUsinthetrainingprocesswasthe
turningpointforusingCNNsinimagerecognition.Inthe2012ImageNetcompetition,the?rstCNNeversubmitted,namedAlexNet(Krizhevskyetal
2012
),wonthecompetition.ThetrainingofAlexNetusedoveronemillionlabeledimagesabout~1000objectcategoriesandtook~6daysusing2GPUs(Krizhevskyetal
2012
).Sincethen,deepneuralnetworkshavewon
manyinternationalpatternrecognitioncompetitionsandhaveattractedbroadattention,byoutperforminglegacymachinelearningmethodsandhandlingbetterlargeamountsofdatawithminimumuserinterven-tion(Schmidhuber
2015
).Assuch,theyoffercon-siderablepotentialforarchaeology.
Amongthecommontasksassignedtodeeplearn-ingCNNnetworksareimageclassi?cation,objectdetection,andsemanticsegmentation.Classi?cationisabasicprocessroutinelyperformedinarchaeologywiththeobjectiveofclassifyinggroupsofimagesthatsharesomecommonfeatures,orobjectsintooneofanumberofprede?nedclasses.Forexample,AImeth-odshavebeenusedtoanalyzeuse-wearonlithictools(e.g.,VandenDries
1998
)andtoclassifyandidentifytypesofpottery(e.g.,H?rretal
2008
;Anichinietal,
2021
;PawlowiczandDownum
2021
).CaspariandCrespo(
2019
),usedanobject-detectionbasedmethodtoidentifyIronAgeburialmoundsinaerialimagery.Morerecently,Agapiouetal(
2021
)appliedtheobjectdetectionmethodtodetectsurfaceceramicsindroneimages.Finally,semanticsegmentationalgorithmsattempttoanalyzeimagesfurther,bypartitioningthemintosemanticallymeaningfulpartsandafter-wardsbyclassifyingeachpartintooneofthe‘X’pre-determinedclassesi.e.,interpretableimageregionsforinstance,archaeologicalsites,regionsofvegetation,modernstructuresandothers(e.g.,Garcia-Garciaetal
2018
;Minaeeetal
2020
).Semanticsegmentationoperatesatpixel-levelinthesensethateachpixelofanimageislabeledaccordingtotheclassitbelongsto.Thismakessemanticsegmentationamuchmorecomplicatedandcomputationallyintensivetask,yetitcanproducemoreinformativeanddetailedresultscomparedtoclassi?cationandobjectidenti?cation(e.g.,Kendalletal
2015
;Garcia-Garciaetal
2018
;Minaeeetal
2020
).ThevalueofthisapproachforgeophysicalanalysishasbeendemonstratedintheworkofKü?ükdemirciandSarris’s(
2020
)usingground-penetratingradarimages.
Forallthissuccess,onlyrecentlytherehavebeenlimitedyetincreasingworkadoptingCNNapproachesfortheautomateddetectionofarchaeologicalsites(Trieretal
2018
;CaspariandCrespo,
2019
;Kazimietal
2019
;Lambersetal
2019
;Rayneetal
2020
;Somraketal
2020
;Soroushetal
2020
;Bonhageetal
2021
;Verschoof-vanderVaartandLandauer
2021
)fromEarthobservation(EO)data.Inpart,thisisduetotheneedforanabundanceoflabeleddatatoenabletheCNNtoaccuratelyidentifydifferentsignatures.Forexample,ImageNet,anopenlyavailablevisualdatabasedesignedforuseineverydaycontemporary
Figure1.Demonstrationoftheconvolutionofanimagewithanedgedetection?lter.Ontheleftistheinitialimage,inthemiddleisanedgedetection?lterandontherightistheresultedimage,whichshowstheedgesoftheinitialimage.
objectrecognitioncomprises14,197,122images(Rus-sakovskyetal
2015
).Itisthisvolumeoflabelleddata,whichhasenabledrapidadvancesintheuseofCNNinday-to-daytasks.Inarchaeologyhowever,similarlytoother?elds,theamountoffreelyavailable,properlylabeleddataiscurrentlylimited.Furthermore,onlinesharingofsuchdataisoftenrestrictedbycon-?dentialityissuesthatariseoftenfromlocallegisla-tion,relatedwiththeefforttoprotectthesesitesfromlooting.
Inthispaper,weofferarouteforwardbyusingopenlyavailablesatellitehighspatialresolutionima-geryandthroughexaminingtwoneuralnetworkarchitectures:TheSegNet(Kendalletal
2015
),adeepconvolutionalencoder-decoderarchitectureforrobustsemanticpixel-wiselabeling;andacustom8-layerCNNdesignedforthisresearch(SimpleNet).Wealsoopen-upaccesstothesetoolsthroughprovid-ingapackagedapplication(supplementaryinforma-tion)allowingreaderstoruntheirownanalysis,helpingthemtoevaluatethestrengthsandweaknessesofthisnetworkandbeginamoreopenandinclusiveconversationabouttheiruseinarchaeology.
Convolutionalneuralnetworks(CNN)
Inthissectionwebrie?yintroducethefundamentalconceptsofCNNs.Althoughamoreextensivepre-sentationofCNNsisbeyondthescopeofthiswork,theinterestedreadercan?nddetailedintroductionsfocusingonvariousaspectsofCNNsinseveralworksincluding,Nielsen(
2015
);Wu(
2017
);Alzubaidietal(
2021
);Lietal(
2021
);andUlkuandAkagün-düz(
2022
).
DeeplearningalgorithmsareatypeofmachinelearningtechniquethatusesANNofseverallayersinahierarchicalarchitecturetoenablemachinestopro-cessdatainanonlinearmanner.Arti?cialneuralnet-worksconsistofcircuitsofsimple,yethighlyinterconnected,nodestoselectivelytransmitsignalsinaprocessthatmimicsthebiologicalneurons(Hop?eld
1982
),therebysimulatingthewaybiologicalneuralnetworkswork.Thesenodesareorganizedin
layerswhichprocessinformationbyoutputtingdynamicstateresponsestoexternalinputs(commonlyaresponsefromapreviouslayer).DataareintroducedtotheANNthroughaninputlayerandresultsdeliv-eredwitha?naloutputlayer.Allintermediatelayersaretermedhiddenlayers,whichcarryoutallthepro-cessing.Thelargerthenumberofhiddenlayers,the‘deeper’thenetwork,enablingtheidenti?cationpro-gressivelyofmorecomplexpatternsanddetails.Forexample,the?rstlayermaylearnrecognizingedgesinanimage,thesecondshapes,thethirdobjectsandsoon.
Informationispassedbetweenlayersthroughcon-
nectionsthatarecharacterizedbyweightsandbiases,sothatthereceivedtotaloutputcorrespondstoaweightedsumofindividualnode-inputs,plussomebias.Theresultoutputmayormaynotexceedathresholdde?nedbyapre-setactivationfunctionsuchasasigmoidormostcommonlyarecti?edlinearacti-vationfunction(ReLU;seebelow),essentiallydecidingifthisinformationshouldbetransmittedtothenextlayer(forwardpassed),asitisorinamodulatedform,orrather?lteredout.Theoptimalvaluesofeachweightandbiasarede?nedbythetrainingofthenet-work:anon-linearoptimizationprocesswherebyacostfunctionrepresentingthedistancebetweentrain-inglabeleddataandthatpredictedbynetworkresultsisminimized.
Thenumberofrequireddeeplayerswithinthe
network,andthereforeindirectlythenumberofunknowns(i.e.,parametersthataretobetunnedthroughthetraining),dependsonthecomplexityofthepatternstobeidenti?edandtheamountoflabeleddata.Atpresent,alimitednumberoflabelledimagesforarchaeologyimposesarequirementforcarefuldesignoflearningnetworks,keepingthenumberoflayersandconnectionslowenoughtoensurethattheoptimizationproblemofnetworktrainingisnotunder-determinedi.e.,thenumberofunknownpara-metersexceedthenumberofdataandpriorcon-straintsthatareusedtoregularize/stabilizethetrainingandreducethegeneralizationerror(over-?tting)(e.g.,Goodfellowetal
2016
).
Figure2.Architectureofthe8-layerconvolutionalneuralnetwork.
Table1.ArchaeologicalsitesinPeruusedtotrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Period
LaCentinela(ChinchaValley)
?13.450385,?76.171092
Inca(AD1476–1532)LateIntermediate(AD1000–1476AD)
Cahuachi(NazcaValley)
?14.818241,?75.117462
EarlyIntermediate(c.200BC–AD600)
Caral(SupeValley)
?10.890938,?77.521858
LatePreceramic(c.3000–1800BC)
TamboColorado(PiscoValley)
?13.704619,?75.829431
Inca(AD1476–1532)
Table2.Additionalarchaeologicalsites(areas)inPerutofurthertrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Periods
Various(LowerIcaValley)
?14.614319,?75.614994
Various(1800BC–AD1534)
NazcaGeoglyphs(PampadeSanJosé,NascaValley)
?14.696486,?75.178422
EarlyIntermediate(200BC–AD600AD)
CerroSechín(CasmaValley)
?9.480703,?78.258997
InitialPeriod(1600BC)
Hereweexaminetwodifferent,supervised,fullyconvolutional,neuralnetworks:onebasedonthearchitectureofSemanticSegmentationcalledSegNet(Kendalletal
2015
;Badrinarayananetal
2017
);andtheotheracustom8-layernetworkdevelopedbytheauthorscalledSimpleNet.Botharefullyconvolutionalneuralnetworks,acategoryofnetworkconsistingoflocallyconnectedlayerssothateachneurononlyreceivesinputfromasmalllocalsubgroupofthepixelsintheinputimage.SuchLayerscanperformconvolu-tion/deconvolution,pooling(i.e.,asample-baseddis-cretizationprocessthateffectivelydown-samplestheimage)andup-sampling,butnotcontainingfullycon-nectedlayers,andthusrequiringsigni?cantlylessmemoryandcomputationalpower(Longetal
2015
).SemanticsegmentationalgorithmshavebeenusedwidelyinclassifyingfeaturesinvariousremotesensingimagesincludinghighresolutionGoogleEarthimages(Yuetal
2021
).Additionally,thecustom8-layernet-workwasdesignedtobeimplementedforthelownumberoflabeleddatausedinthiswork.Inthefol-lowingsections,wedescribethearchitectureandfunc-tionalityofthesetwonetworks.
SegNet
SegNetisadeepfullyconvolutionalneuralnetworkthatsegmentstheimagebyclassifyingeachpixelindependently.Itconsistsofanencodernetworkwith13layers,eachdesignedforobjectclassi?cation.Eachlayerisconvolvedusingasetof2D?lterstoproduceasetoffeaturemapsofincreasingcomplexityasdescribedpreviously.Thesemapsarelaterbatchnormalizedi.e.,tohaveameanoutputcloseto0andtheoutputstandarddeviationcloseto1.Next,aReLUactivationfunctionisappliedfollowedbydown-samplingusingamaxpoolinglayerwitha2×2nonoverlappingwindow(Kendalletal
2015
;Badrinaraya-nanetal
2017
).TheReLUactivationfunctionisalinearfunctionthatoutputstheinputifitispositive,orelse,outputszero(Haraetal
2015
).Themaxpoolingfunctioncalculatesthemaximum,ineachpatchofeachfeaturemap(Chollet
2017
).Inthe?nallayertheresultingoutput,fromthepreviousstep,issub-sampledbyafactorof2whiletheboundaryinforma-tionisalsostored.Thisiscrucialasduringthesuccessivedown-samplingoperationsthehighfre-quencydetailsoftheimagearelessenedresultingin
Figure3.Asampleofthe2000Trainingimages,ofsize256×256×3pixels(GoogleEarthimagery),fromvariousarchaeologicalareasaroundPeru.Thetoprowshowstheinitialimagesandthebottomrowthelabeledimages.
blurryandinaccurateboundaries.However,bound-ariesareimportantinsmallobjectsandstructuressuchasbuildings,cropmarksetcandbystoringthisinformationitcanberetrievedduringthedecodingstage.
Thenetworkconsistsof13decoderlayerseachonecorrespondingtoitsrespectiveencoderlayer.Theroleoftheencoderlayersistosemanticallyprojectthelowerresolutionfeaturesextracted(learnt)bytheencoder,ontothehigherresolutionimagespacetogetadenseclassi?cation,i.e.,aclassi?cationforeachpixelintheoriginalsizedimage.Eachdecoderlayerpro-ducesdensefeaturemaps(images)byup-samplingitsinputfeaturemaps(theoutputofthepreviouslayer)usingthememorizedmax-poolingindicesproducedonthepreviousstage.Thenconvolutionisappliedusingatraineddictionaryof?lterstoproducedensefeaturemaps.The?naldecoderoutputisfedintoaSoftMaxclassi?er,i.e.,alayerthatassignseachpixelindependentlytoaclassaccordingtoaprobabilityscoreamongthecandidateclasses(e.g.,Nielsen
2015
;Alzubaidietal
2021
).
2.2.Acustom8-layerconvolutionalneuralnetwork
(SimpleNet)
Sincetheamountoflabeleddataavailableforarchae-ologyislimited,weconstructedacustom8-layerconvolutionalneuralnetwork(SimpleNet),basedontheSegNetarchitecturewiththeaimofkeepingthenumberoflayersandtrainableparametersaslowaspossiblewhileachievingadequatelyaccurateresults.The?rstlayerisanimageinputlayerthatreceivesRGBimages.Thenextlayerisaconvolutionallayerwith32trainable?ltersappliedinanon-overlappingmovingwindowofsize5×5andwithstride1.Strideshows
howmuchthe?ltershiftsaroundtheinputvolume(inourcaseitshiftsbyoneunit)whilethe?lterapproximatestheLaplacian(i.e.,a2Dsecondspatialderivative)oftheGaussianoperatorandessentiallywhenconvolvedwithanimagederivesasanoutputanapproximationofitssecondspatialderivative.Thismeansthatinregionswheretheimagehasconstantintensitythe?lter’sresponsewillbezero.Inregionswheretheintensity(i.e.,pixelbrightness)changesrapidly,however,suchasattheedgesofanobject,the?lter’sresponseyieldshighamplitudes(?gure
1
).
The?lterscanbeconceivedofas2Dimageswhose
shapeandcolorareadjustedthroughthetrainingpro-cesstooptimallyexpressdifferentfeaturesofthedata(e.g.,?gure
2
).Next,arecti?edlinearunit(ReLU)isappliedfollowedbyamax-poolingwitha2×2nonoverlappingwindowwithstride2andapaddingwith0’s.Thisisthemostcommoncon?gurationasitdis-cardsthe75%oftheactivationsinaninputimageduetodown-samplingby2inbothwidthandheight.Fol-lowingthis,atransposeconvolutionisappliedwiththesamenumberof?ltersandawindowwith4×4sizeandstride2.Likewise,thisisacommoncon?g-uration,asthedivisibilityofthewindowsizebythestridemitigatestheproblemofcheckerboardartifactsintheup-sampledimage(e.g.,Odenaetal
2016
).Thesixthlayerisanotherconvolutionallayerof1×1windowsizeandstride1.Then,aSoftMaxclassi?erisapplied,tothe?naloutputfromthepreviouslayer,toassigneachpixelintoaclass.Finally,theimageisseg-mentedintotheassignedclassesbyaclassi?cationlayerthatcalculatestheclassweighedcross-entropyloss(e.g.,Bishop
2006
).The8-layerconvolutionalneuralnetworktechniqueisillustratedin?gure
2
.
Figure4.Histogramillustratingthenumberofpixelsusedineachofthe4classesfortheD500datasetwithorangecolorandfortheD2000datasetwithbluecolor.
Trainingandoptimisation
Data
Weusedopenlyavailablehigh-resolutionimagesfromGoogleEarthofarchaeologicalsitesinPeruasatrainingsetforbothnetworks.Thisgeographicalregionwaschosenforitscontinueddiscoveryofnewsitesusingremotelysenseddata(Ruggles
2015
;Bikoulisetal
2018
;CignaandTapete
2018
)andtheavailabilityofdatafrompreviouslarge-scalearchae-ologicalterrestrialsurveysforevaluationpurposes.
Initially,welabeled500imagesfrom4differentarchaeologicalsites,(table
1
).AsmallpartoftheTamboColoradoarchaeologicalsitewasthenusedtotrainthealgorithmandalargerareaofthesamesitefortesting.
Later,weaugmentedtheoriginal500imageswithafurther1500fromwiderarchaeologicalareasandsitesacrossPerutofurthertrainthealgorithm(table
2
)andcheckitsperformanceasthenumberoflabeleddataincrease.Theseadditionalimagesconsistmostlyofgeoglyphs(usuallylinearfeatures)markedinopendesertpampaenvironments.Figure
3
showssomesamplesoflabeledimagesusedinthiswork.
OptimisationprocessThedatawerelabelledwiththeImageLabelerprograminMatlab9.6usingfourdifferentclasses:‘a(chǎn)rchaeologi-cal’,‘modern’,‘vegetation’and‘background’.As‘a(chǎn)rchaeological’weincludedeverytargetofarchae-ologicalinterest,regardlessofshape,condition,color,periodetcWelabeledlinear,rectilinear,andcircularfeaturesthatwereclearlyvisibleintheGoogleEarthimagery,correspondingtoalargevarietyofarchae-ologicalfeatures.Weusedsuchbroadterminologybecausethetargetofthisworkwastofurtherincreasethenumberoftrainingimagesavailabletousersin
Table3.OptimalsetofparametersforSegNet,8-layerD500andD2000networks.
Parametername Value
Gradientdecayfactor 0.9000
Squaredgradientdecayfactor 0.9990Epsilon 1e-08
Initiallearningrate 1e-04(D500)and1e-03(D2000)
Dropratefactor 0.4
Dropperiod 5
L2-regularizationparameter 1e-09Gradientthresholdmethod UsingtheL2-normMaxepochs 30
Minibatchsize 5(D500)and15(D2000)
Shuf?e Ateveryepoch
future,withsub-classi?cationopenasanoptiontothosewhowishtomakeuseofthedataset.As‘modern’welabeledmodernstructuressuchasmodernbuild-ingsandvehicles.‘Vegetation’incorporatesareasofgrass,plants,andtrees.Finally,as‘background’weclassi?edeverythingelse,suchassoil,non-pavedroads,and?eldswithoutvegetation.Imagesintheinitialsetof500weredenotedasD500,andinthelarger2000setasD2000.Imagesforthesites/areasofinterestwereextractedfromGoogleEarthinRGB(Red,Green,Blue)asjpg?les.Ourgoal,istotrainanalgorithmtousehighresolution,freelyavailableGoogleEarthimages.Unfortunately,GoogleEarthdoesnotproviderawimagesthereforewehavetorelyonthealreadyprocessedimagesthataremadeavailablethroughtheGoogleEarthapplication.Itshouldbenotedherethatatpresent,thehigh-resolutionimagesinGoogleEarthapplicationarenotavailableinGoogleEarthEngineandthereforeisnotpossibletousethisenvironmenttotraindataset.
Figure5.SegmentationofthearchaeologicalsiteofTamboColoradowiththe3trainednetworks,(a)GoogleEarth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代商業(yè)辦公空間的照明藝術(shù)
- 現(xiàn)代辦公設(shè)備與技術(shù)概覽
- 殘障者康復(fù)教育與社區(qū)資源的聯(lián)動(dòng)發(fā)展
- Module3 Unit1 What are they doing?(說課稿)-2024-2025學(xué)年外研版(三起)英語四年級(jí)上冊(cè)
- 7 我是班級(jí)值日生(說課稿)-2024-2025學(xué)年統(tǒng)編版道德與法治二年級(jí)上冊(cè)
- Unit 3 Its a colourful world!Part B Let's learn(說課稿)-2024-2025學(xué)年外研版(三起)(2024)英語三年級(jí)上冊(cè)
- 2023六年級(jí)數(shù)學(xué)上冊(cè) 二 分?jǐn)?shù)乘法第3課時(shí) 分?jǐn)?shù)與整數(shù)相乘說課稿 蘇教版
- 5《這些事我來做》(說課稿)-部編版道德與法治四年級(jí)上冊(cè)
- Unit5 My clothes Part A Lets talk (說課稿)-2023-2024學(xué)年人教PEP版英語四年級(jí)下冊(cè)001
- 《1 有余數(shù)的除法-第二課時(shí)》(說課稿)-2023-2024學(xué)年二年級(jí)下冊(cè)數(shù)學(xué)蘇教版001
- 2025年度高端商務(wù)車輛聘用司機(jī)勞動(dòng)合同模板(專業(yè)版)4篇
- 2025年人教版新教材數(shù)學(xué)一年級(jí)下冊(cè)教學(xué)計(jì)劃(含進(jìn)度表)
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2025長(zhǎng)江航道工程局招聘101人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年黑龍江哈爾濱市面向社會(huì)招聘社區(qū)工作者1598人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年國(guó)新國(guó)際投資有限公司招聘筆試參考題庫含答案解析
- 2025年八省聯(lián)考四川高考生物試卷真題答案詳解(精校打印)
- 五年級(jí)上冊(cè)脫式計(jì)算100題及答案
- 蘭州市規(guī)范醫(yī)療服務(wù)價(jià)格項(xiàng)目基準(zhǔn)價(jià)格表
- 火災(zāi)隱患整改登記表
- 普通地質(zhì)學(xué)教材
評(píng)論
0/150
提交評(píng)論