版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省鹽湖五中2025屆數(shù)學高一下期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.變量滿足,目標函數(shù),則的最小值是()A. B.0 C.1 D.-12.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}3.將函數(shù)的圖像上的所有點向右平移個單位長度,得到函數(shù)的圖像,若的部分圖像如圖所示,則函數(shù)的解析式為A. B.C. D.4.如圖,在中,面,,是的中點,則圖中直角三角形的個數(shù)是()A.5 B.6 C.7 D.85.已知向量若為實數(shù),則=()A.2 B.1 C. D.6.化簡結(jié)果為()A. B. C. D.7.設(shè)滿足約束條件則的最大值為().A.10 B.8 C.3 D.28.如圖,,是半徑為2的圓周上的定點,為圓周上的動點且,,則圖中陰影區(qū)域面積的最大值為()A. B. C. D.9.在中,,,,則=()A. B.C. D.10.已知,則的最小值為A.3 B.4 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.與終邊相同的最小正角是______.12.設(shè)等差數(shù)列的前項和為,若,,則的值為______.13.在平面直角坐標系中,從五個點:中任取三個,這三點能構(gòu)成三角形的概率是_______.14.若、是方程的兩根,則__________.15.函數(shù)的零點的個數(shù)是______.16.已知指數(shù)函數(shù)上的最大值與最小值之和為10,則=____________。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,函數(shù).(1)當時,解不等式;(2)若對,不等式恒成立,求a的取值范圍.18.某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重(kg)數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組[60,65)的人數(shù)為1.根據(jù)一般標準,高二男生體重超過65kg屬于偏胖,低于55kg屬于偏瘦.觀察圖形的信息,回答下列問題:(1)求體重在[60,65)內(nèi)的頻率,并補全頻率分布直方圖;(2)用分層抽樣的方法從偏胖的學生中抽取6人對日常生活習慣及體育鍛煉進行調(diào)查,則各組應分別抽取多少人?(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).19.已知函數(shù)f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范圍20.如圖,在斜三棱柱中,側(cè)面是邊長為的菱形,平面,,點在底面上的射影為棱的中點,點在平面內(nèi)的射影為證明:為的中點:求三棱錐的體積21.已知圓.(1)求圓的半徑和圓心坐標;(2)斜率為的直線與圓相交于、兩點,求面積最大時直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先畫出滿足條件的平面區(qū)域,將變形為:,平移直線得直線過點時,取得最小值,求出即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:
由得:,
平移直線,顯然直線過點時,最小,
由,解得:
∴最小值,
故選:D.【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.2、D【解析】
根據(jù)并集定義計算.【詳解】由題意A∪B={x|-2<x<3}.故選D.【點睛】本題考查集合的并集運算,屬于基礎(chǔ)題.3、C【解析】
根據(jù)圖象求出A,ω和φ的值,得到g(x)的解析式,然后將g(x)圖象上的所有點向左平移個單位長度得到f(x)的圖象.【詳解】由圖象知A=1,(),即函數(shù)的周期T=π,則π,得ω=2,即g(x)=sin(2x+φ),由五點對應法得2φ=2kπ+π,k,得φ,則g(x)=sin(2x),將g(x)圖象上的所有點向左平移個單位長度得到f(x)的圖象,即f(x)=sin[2(x)]=sin(2x)=,故選C.【點睛】本題主要考查三角函數(shù)解析式的求解,結(jié)合圖象求出A,ω和φ的值以及利用三角函數(shù)的圖象變換關(guān)系是解決本題的關(guān)鍵.4、C【解析】試題分析:因為面,所以,則三角形為直角三角形,因為,所以,所以三角形是直角三角形,易證,所以面,即,則三角形為直角三角形,即共有7個直角三角形;故選C.考點:空間中垂直關(guān)系的轉(zhuǎn)化.5、D【解析】
求出向量的坐標,然后根據(jù)向量的平行得到所求值.【詳解】∵,∴.又,∴,解得.故選D.【點睛】本題考查向量的運算和向量共線的坐標表示,屬于基礎(chǔ)題.6、A【解析】
根據(jù)指數(shù)冪運算法則進行化簡即可.【詳解】本題正確選項:【點睛】本題考查指數(shù)冪的運算,屬于基礎(chǔ)題.7、B【解析】
作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)即可求解.【詳解】作出可行域如圖:化目標函數(shù)為,聯(lián)立,解得.由圖象可知,當直線過點A時,直線在y軸上截距最小,有最大值.【點睛】本題主要考查了簡單的線性規(guī)劃,數(shù)形結(jié)合的思想,屬于中檔題.8、D【解析】
由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,運用扇形面積公式和三角形的面積公式,計算可得所求最大值.【詳解】由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,即有,到線段的距離為,,扇形的面積為,的面積為,,即有陰影區(qū)域的面積的最大值為.故選.【點睛】本題考查扇形面積公式和三角函數(shù)的恒等變換,考查化簡運算能力,屬于中檔題.9、C【解析】
根據(jù)正弦定理,代入即可求解.【詳解】因為中,,,由正弦定理可知代入可得故選:C【點睛】本題考查了正弦定理在解三角形中的應用,屬于基礎(chǔ)題.10、C【解析】
由,得,則,利用基本不等式,即可求解.【詳解】由題意,因為,則,所以,當且僅當時,即時取等號,所以的最小值為5,故選C.【點睛】本題主要考查了基本不等式的應用,其中解答中熟記基本不等式的使用條件,合理構(gòu)造是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)終邊相同的角的定義以及最小正角的要求,可確定結(jié)果.【詳解】因為,所以與終邊相同的最小正角是.故答案為:.【點睛】本題主要考查終邊相同的角,屬于基礎(chǔ)題.12、-6【解析】
由題意可得,求解即可.【詳解】因為等差數(shù)列的前項和為,,所以由等差數(shù)列的通項公式與求和公式可得解得.故答案為-6.【點睛】本題考查了等差數(shù)列的通項公式與求和公式,考查了學生的計算能力,屬于基礎(chǔ)題.13、【解析】
分別算出兩點間的距離,共有種,構(gòu)成三角形的條件為任意兩邊之和大于第三邊,所以在這10種中找出滿足條件的即可.【詳解】由兩點之間的距離公式,得:,,,任取三點有:,共10種,能構(gòu)成三角形的有:,共6種,所求概率為:.【點睛】構(gòu)成三角形必須滿足任意兩邊之和大于第三邊,則n個點共有個線段,找出滿足條件的即可,屬于中等難度題目.14、【解析】
由題意利用韋達定理求得、的值,再利用兩角差的正切公式,求得要求式子的值.【詳解】解:、是方程的兩根,,,,或,,則,故答案為:.【點睛】本題主要考查韋達定理,兩角差的正切公式,屬于基礎(chǔ)題.15、【解析】
在同一直角坐標系內(nèi)畫出函數(shù)與函數(shù)的圖象,利用數(shù)形結(jié)合思想可得出結(jié)論.【詳解】在同一直角坐標系內(nèi)畫出函數(shù)與函數(shù)的圖象如下圖所示:由圖象可知,函數(shù)與函數(shù)的圖象的交點個數(shù)為,因此,函數(shù)的零點個數(shù)為.故答案為:.【點睛】本題考查函數(shù)零點個數(shù)的判斷,在判斷函數(shù)的零點個數(shù)時,一般轉(zhuǎn)化為對應方程的根,或轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù),考查數(shù)形結(jié)合思想的應用,屬于中等題.16、【解析】
根據(jù)和時的單調(diào)性可確定最大值和最小值,進而構(gòu)造方程求得結(jié)果.【詳解】當時,在上單調(diào)遞增,,解得:或(舍)當時,在上單調(diào)遞減,,解得:(舍)或(舍)綜上所述:故答案為:【點睛】本題考查利用函數(shù)最值求解參數(shù)值的問題,關(guān)鍵是能夠根據(jù)指數(shù)函數(shù)得單調(diào)性確定最值點.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)或.【解析】
(1)代入,把項都移到左邊,合并同類項再因式分解,即可得到本題答案;(2)等價于,考慮的圖象不在圖象的上方,利用數(shù)形結(jié)合的方法,即可得到本題答案.【詳解】(1)當時,由得,即,解得,或,所以,所求不等式的解集為或;(2)等價于,所以當時,的圖象在圖象的下方,所以或所以,,或.【點睛】本題主要考查一元二次不等式以及利用數(shù)形結(jié)合的方法解決不等式的恒成立問題.18、(1)(2)三段人數(shù)分別為3,2,1(3)【解析】試題分析:(1)利用頻率分布直方圖的性質(zhì)能求出求出體重在[60,65)內(nèi)的頻率,由此能補全的頻率分布直方圖;(2)設(shè)男生總?cè)藬?shù)為n,由,可得n=1000,從而體重超過65kg的總?cè)藬?shù)300,由此能求出各組應分別抽取的人數(shù);(3)利用頻率分布直方圖能估計高二男生的體重的中位數(shù)與平均數(shù)試題解析:(1)體重在內(nèi)的頻率補全的頻率分布直方圖如圖所示.(2)設(shè)男生總?cè)藬?shù)為,由,可得體重超過的總?cè)藬?shù)為在的人數(shù)為,應抽取的人數(shù)為,在的人數(shù)為,應抽取的人數(shù)為,在的人數(shù)為,應抽取的人數(shù)為.所以在,,三段人數(shù)分別為3,2,1.(3)中位數(shù)為60kg,平均數(shù)為(kg)考點:1.眾數(shù)、中位數(shù)、平均數(shù);2.分層抽樣方法;3.頻率分布直方圖19、(1);(2)[0,].【解析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本試題組要是考查了三角函數(shù)的運用.20、(1)詳見解析(2)【解析】
(1)先證平面平面,說明平面且,根據(jù)菱形的性質(zhì)即可說明為的中點.(2)根據(jù),即求出即可.【詳解】(1)證明:因為面,平面,所以平面平面;交線為過作,則平面,又是菱形,,所以為的中點(2)由題意平面【點睛】本題考查面面垂直的性質(zhì)定理,利用等體積轉(zhuǎn)換法求三棱錐的體積,屬于基礎(chǔ)題.21、(1)圓的圓心坐標為,半徑為;(2)或.【解析】
(1)將圓的方程化為標準方程,可得出圓的圓心坐標和半徑;(2)設(shè)直線的方程為,即,設(shè)圓心到直線的距離,計算出直線截圓的弦長,利用基本不等式可得出的最大值以及等號成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全演講稿300字(35篇)
- 新教材高考地理二輪復習綜合題專項訓練四作用措施類含答案
- 山東省煙臺市2024-2025學年高三上學期期中學業(yè)水平診斷考試語文試題(解析版)
- 河南省南陽市新野縣 2024 年秋期期中質(zhì)量調(diào)研八年級物理試卷
- 2024-2025學年山東省煙臺市高一上學期期中學業(yè)水平診斷數(shù)學試題(含答案)
- 房屋建造定制合同
- 調(diào)研報告:執(zhí)行費收取存在的問題及建議
- 商業(yè)土地無償轉(zhuǎn)讓協(xié)議
- 2025年高考語文古詩文篇目讀寫專練:選擇必修下冊之《望海潮》(學生版)
- 2025年中考語文復習之現(xiàn)代文閱讀:說明文句段作用(講義)
- 中低產(chǎn)田類型劃分及改良技術(shù)規(guī)范
- 2024-2030年再生醫(yī)學市場發(fā)展行情監(jiān)測及前景運營態(tài)勢趨向研判研究報告
- 2020年山東煙臺中考滿分作文《就這樣被打動》9
- 國網(wǎng)員工合同模板
- 建設(shè)2臺66000KVA全封閉低碳硅錳礦熱爐項目竣工環(huán)保驗收監(jiān)測調(diào)查報告
- 期中核心素質(zhì)卷(試題)-2024-2025學年數(shù)學六年級上冊北師大版
- 《Photoshop圖像處理》5.《濾鏡特效技巧的學習》試卷
- 2024年新人教版數(shù)學七年級上冊 3.2 求代數(shù)式的值 教學課件
- 2025屆四川省綿陽市高三第一次調(diào)研測試物理試卷含解析
- 華為HCIA OpenEuler H12-611認證必考試復習題庫(含答案)
- 2024年秋一年級上冊10 ai ei ui 教學設(shè)計(表格式3課時)作業(yè)設(shè)計
評論
0/150
提交評論