教學(xué)設(shè)計(jì)-劉冬_第1頁(yè)
教學(xué)設(shè)計(jì)-劉冬_第2頁(yè)
教學(xué)設(shè)計(jì)-劉冬_第3頁(yè)
教學(xué)設(shè)計(jì)-劉冬_第4頁(yè)
教學(xué)設(shè)計(jì)-劉冬_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余1頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、用平方差公式分解因式教學(xué)設(shè)計(jì)課題用平方差公式分解因式授課人育才中學(xué)劉冬教 學(xué) 目標(biāo)1、知識(shí)與技能(1)使學(xué)生進(jìn)一步理解因式分解的意義;(2)掌握用平方差公式分解因式的方法。(3)掌握提公因式法、平方差公式法分解因式的綜合運(yùn)用。2、過(guò)程與方法(1)經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因 式之間的聯(lián)系。(2)通過(guò)乘法公式:(a+b) (a+b)=a:逆向變形,進(jìn)一步發(fā) 展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語(yǔ)言 表達(dá)能力。情感目標(biāo)通過(guò)學(xué)生探究的過(guò)程,使學(xué)生養(yǎng)成認(rèn)真觀察,細(xì)致分析的 學(xué)習(xí)態(tài)度,獲得成功的體驗(yàn),鍛煉克服困難的意志。教學(xué)重點(diǎn)利用平方差公式分解因式教學(xué)難點(diǎn)高次指數(shù)的轉(zhuǎn)

2、化、兩種因數(shù)分解方法(提公因式法、平方差公 式)的靈活運(yùn)用。問(wèn)題與情境設(shè)計(jì)意圖活動(dòng)一、知識(shí)回顧進(jìn)一步明判斷以下哪些是因式分解?確因式分解概(1)(2x-l)2=4x2-4x+l念,復(fù)習(xí)舊知(2)3x2 + 9xy3x = 3x (x + 3y1)識(shí),為新知識(shí)(3) 4x2T-4xy+y2=(2x+l) (2xT) -y (4x-y)的學(xué)習(xí)做準(zhǔn)2備.+a -2 =a(a +1)(4)a:通過(guò)設(shè)置問(wèn)問(wèn)題:1 觀察一下因式分解左邊是什么形式?右邊是什么形題,式?(1)與(2)說(shuō)明2.運(yùn)用提取公因式法公解因式的步驟是什么?平方差公式可3.你能將多項(xiàng)式 -9與多項(xiàng)式(2)4x2-y2分解因以用來(lái)分解因式

3、嗎?式;以問(wèn)題調(diào)活動(dòng)二、新課引出動(dòng)學(xué)生的探究問(wèn)題1:這兩個(gè)多項(xiàng)式有什么共同的特點(diǎn)?欲望教師深入小組,傾聽學(xué)生的交流后,引導(dǎo)學(xué)生從項(xiàng)數(shù)、次數(shù)、符號(hào)等方面觀察這兩個(gè)多項(xiàng)式的特點(diǎn).讓學(xué)生充問(wèn)題2:以前我們學(xué)習(xí)過(guò)的哪個(gè)公式符合這個(gè)特點(diǎn)?分經(jīng)歷觀察、學(xué)生能夠想到乘法公式平方差公式(a+b) (a-b)=a2-b2類比、歸納、做一做:概括的過(guò)程,左邊是整式的乘積,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)探究岀將乘法就是(平方差公式),左邊是,右邊是請(qǐng)你判斷一下,第二個(gè)式公式逆用就能子從左到右是不是因式分解?像這樣將乘法公式反過(guò)來(lái)用,對(duì)多項(xiàng)式進(jìn)行因式分解,這種解決問(wèn)題,再因式分解方法稱為來(lái)歸納出分解因式的平方差a

4、:-b2= (a+b) (a-b) 因式分解用這個(gè)公式公式.全班齊背公式。教師板書調(diào)動(dòng)每個(gè)人都活動(dòng)三、新知的分析、概括、總結(jié)參與到學(xué)習(xí)活問(wèn)題1:將a2 b = (a+b) (ab)用文字語(yǔ)言表述.公式動(dòng)中。中的字母a、b可以表示什么?鍛煉學(xué)生的文問(wèn)題2:讓學(xué)生舉符合平方差公式特點(diǎn)的多項(xiàng)式的例子字概括及語(yǔ)言小結(jié):因式分解平方差公式形式和特點(diǎn):表達(dá)能力.公式的左邊是兩個(gè)數(shù)的平方的差的形式;右邊是這兩個(gè)底用圖形數(shù)和與這兩個(gè)底數(shù)差的積描述這兩個(gè)公O2 - O: =( + O)( - O)式,學(xué)生能夠O輕松接受,而活動(dòng)四、應(yīng)用新知,嘗試練習(xí)且能夠幫助學(xué)1.下列多項(xiàng)式能用平方差公式因式分解嗎?生理解平方項(xiàng)

5、(1) 4x2+y2(2) 4x2y2為多項(xiàng)式的情(3) 一4x2 y2(4)y2-4x2況。(5)a242.填空(口答):進(jìn)一步加4=()2竺肌2=()225深對(duì)因式分解9_宀()20.49b2 = ()24平方差公式的6心2),2 = (7 Slp4q2 = (7理解活動(dòng)五、例題與練習(xí)設(shè)計(jì)這一環(huán)例題:把下列各式分解因式節(jié),要將難點(diǎn)引例:(1) m2-16(2 )4x2-9y2分散。先鞏固教師:(1)組織學(xué)生找出題目的底數(shù)a, b。將一個(gè)單向式(2)規(guī)范格式?;善椒降男?式通過(guò)引例和例 1: (1) 4a2 - 9 ;(2) (x+p)(x+q)2例1,進(jìn)一步歸納:把(x+p), (x+q

6、)看作一個(gè)整體,體會(huì)整體換元思想。鞏固平方差公把下列各式分解因式式分解因式的應(yīng)用,進(jìn)一步培養(yǎng)學(xué)生逆向小結(jié):a-b_=(a+b) (ab)中,a, b既可以是個(gè)單項(xiàng)式,思維和勤于觀又可以是多項(xiàng)式;若是多項(xiàng)式時(shí),最后結(jié)果要注意合并察的習(xí)慣,體同類項(xiàng)。會(huì)整體的數(shù)學(xué)例 2 : (1) Jr-/思想.例2及例3使學(xué)生能運(yùn) 用幕的乘方逆歸納:分解因式,必須進(jìn)行到每一個(gè)多項(xiàng)式都不能再分解為運(yùn)算將4次的止.降為2次的,將其轉(zhuǎn)化為兩(2) b 一ab.歸納:分解因式,有公因式時(shí),先考慮“提公因式”后考慮 “公式法”.例 3: -25x2+1和同桌比比,看誰(shuí)算的又快又準(zhǔn):1) 3823722)2132-8723)

7、 229?- 17U4)91X89活動(dòng)六、課堂小結(jié)本節(jié)課你學(xué)到了什么知識(shí)和數(shù)學(xué)思想方法?在因式分解時(shí)因注意哪些問(wèn)題?活動(dòng)七.目標(biāo)檢測(cè)設(shè)計(jì)1、因式分解數(shù)平方差的形 式,從而將問(wèn) 題解決.針對(duì) 分解不徹底地 現(xiàn)象,充分利 用學(xué)生資源, 發(fā)現(xiàn)問(wèn)題,展 示問(wèn)題,使學(xué) 生明口分解因 式,必須進(jìn)行 到每一個(gè)多項(xiàng) 式都不能再分 解為止。學(xué)生 體會(huì)多種方法(提公因式 法、平方差公 式)分解因式 的綜合運(yùn)用, 并進(jìn)一步深化 分解要徹底地 思想.(1) a2 b2 -m2伽一d)?+ (n-b) 2(3) x2(a+bc)22、4x3 - 9xy2結(jié)論:多項(xiàng)式的因式分解要分解到不能再分解為止。布置作業(yè):規(guī)范化作業(yè)把下列多項(xiàng)式

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論