高中數(shù)學(xué)案例:老師我有想法_第1頁
高中數(shù)學(xué)案例:老師我有想法_第2頁
高中數(shù)學(xué)案例:老師我有想法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、老師,我有想法 教育目的的實(shí)現(xiàn)以及教學(xué)計(jì)劃的完成,基本上是在課堂教學(xué)中進(jìn)行的。理想的課堂總是一個(gè)以理服人,以志激人,以情動(dòng)人的樂園,然而現(xiàn)實(shí)中的課堂是復(fù)雜的、多變的,既有興奮、愉悅、甘甜的知識(shí)獲得,也有郁悶、焦慮、困惑的痛苦,還有我們無法預(yù)料的各種情況。其中,教師提問學(xué)生回答是最普遍的現(xiàn)象,但有時(shí)我們卻忽略了一種最重要的東西。下面記錄了筆者一堂推理與證明的復(fù)習(xí)課教學(xué)的小片段,筆者想以習(xí)題為載體復(fù)習(xí)這一章的知識(shí)和方法。一、學(xué)生老師,我有想法。題:已知x、x、xr且滿足條件(1) x+x+x0;(2) xx+ xx+ xx0;(3) xxx0。問:x、x、x中有幾個(gè)正數(shù)?學(xué)生通過分析題目的條件和結(jié)

2、論的制約關(guān)系,運(yùn)用合情推理展開思考,從其形式、結(jié)構(gòu)和數(shù)量關(guān)系展開討論。教師:誰有什么想法,可以大膽地說一說? 學(xué)生1:3個(gè)都為正數(shù)。 教師:你是怎樣得到的? 學(xué)生1:我的直覺告訴我。(學(xué)生哄笑,我也笑,表示贊同和鼓勵(lì)。)教師:好的。說明他有極強(qiáng)的猜想能力,他的答案是對(duì)的。還有不同的想法嗎?學(xué)生2:我發(fā)現(xiàn)x+x、xx比較“熟悉”,就類比到二元的問題:“若x+x0且xx0則x、x中有幾個(gè)正數(shù)?”運(yùn)用韋達(dá)定理構(gòu)造方程:x( x+x)x+ xx=0得出x、x均為正根。就猜想x、x、x均為正數(shù)。(全班發(fā)出贊嘆聲)教師:非常好。(這也是我期待的結(jié)果,實(shí)現(xiàn)了我的初衷)然后師生共同求解:構(gòu)造方程:x( x+x

3、+x) x +(xx+ xx+ xx)x xxx=0根據(jù)條件(1)(2)(3)可知,當(dāng)x0時(shí),等式左邊每項(xiàng)為非負(fù)數(shù),其和為小于0,故當(dāng)x0時(shí)無解。又因?yàn)閤( x+x+x) x +(xx+ xx+ xx)x xxx=(xx)(xx)(xx)=0有三個(gè)根x、x、x,所以x、x、x均為正數(shù)。繼而引導(dǎo)學(xué)生歸納:解決了簡單的情況、特殊的對(duì)象(二元和三元),再歸納、聯(lián)想推進(jìn)的到一般的情形:若xr(i=1,2,3, n )且滿足下列條件:x+x+x+ +x0xx+ xx +xx0xxxx+xxxx0xxxx0則x(i=1,2,3, n )均為正數(shù)。學(xué)生們沉浸在發(fā)現(xiàn)的喜悅中,課堂熱情高漲,達(dá)到教師預(yù)期的目的,

4、教學(xué)和諧有序地進(jìn)行下去可以說這堂課取得了滿意的效果,應(yīng)該沒有缺憾了吧。沒想到下課時(shí)還有幾位學(xué)生匆匆找到了我,似乎很委屈地對(duì)我說,“老師,我也有想法”。學(xué)生3:我發(fā)現(xiàn)條件(1) x+x+x0;(2) xx+ xx+ xx0;(3) xxx0中的次數(shù)依次增加,我的想法是把次數(shù)統(tǒng)一,不知是否可行。他的同桌則說:次數(shù)依次為1,2,3,我的想法是把次數(shù)統(tǒng)一2次。學(xué)生5:我開始覺得很難,后來想到“正難則反”的策略,你說能行嗎?面對(duì)學(xué)生的種種想法既為我的學(xué)生有想法感到高興,又為自己沒有利用好學(xué)生的想法感到遺憾。后來經(jīng)過討論思考分別得出了漂亮的解法,這是我備課時(shí)所沒有想到的。 回到辦公室后,我確實(shí)意識(shí)到自己的

5、課堂處理是不恰當(dāng)?shù)?,甚至開始懷疑自己的教學(xué)方法。這個(gè)問題困擾了我很長一段時(shí)間,現(xiàn)在形成了一些想法,供同行參考。 二、教師我們的課堂有缺憾。1.深信每個(gè)學(xué)生都蘊(yùn)藏著巨大的探究潛能。按照美國當(dāng)代心理學(xué)家馬斯洛的“成長動(dòng)機(jī)說”理論,認(rèn)為人都潛藏著“自我實(shí)現(xiàn)的創(chuàng)造力”。上述案例中,如學(xué)生3之類的“潛能生”在課堂情景的啟發(fā)下也能完成此類難題(真是有巨大的潛能可挖掘),體現(xiàn)出非凡的創(chuàng)造性,本人執(zhí)教的班級(jí)是學(xué)校的普通班,而學(xué)生3又是一個(gè)成績中等的學(xué)生,說明創(chuàng)造性不是優(yōu)秀學(xué)生獨(dú)有的。從課后參與精彩討論表現(xiàn)出非凡的創(chuàng)造性的學(xué)生中看出,只要我們有激發(fā)學(xué)生興趣的措施和供他們操作的平臺(tái),學(xué)生無時(shí)不具有創(chuàng)造性,學(xué)生對(duì)問

6、題的探究應(yīng)該是無所不能的,只要教師相信他們,給他們自信,解決不了的問題畢竟很少,我們盡管放心的把問題給學(xué)生探究,學(xué)生的潛能真的很大。學(xué)生2的想法是這堂課的亮點(diǎn),在他的啟發(fā)下成功地探究出了多種解法,以及對(duì)問題的推廣,得出了一般的解法。說明了只要我們的課堂能真正回歸學(xué)生作為學(xué)習(xí)主人的地位,他們就會(huì)回報(bào)給你驚喜。2解題的根本目的是培養(yǎng)學(xué)生的思維能力 波利亞曾強(qiáng)調(diào):“中學(xué)數(shù)學(xué)教育首要的任務(wù)就是加強(qiáng)解題訓(xùn)練?!笨墒悄壳爸袑W(xué)數(shù)學(xué)解題教學(xué)的實(shí)際狀況是,普遍重視解題的方法技巧,強(qiáng)調(diào)解題過程中具體的一招一式化的程式化訓(xùn)練,甚至套用題型,忽視了數(shù)學(xué)的思想、觀念在解題中發(fā)揮的實(shí)質(zhì)性作用,這樣,對(duì)解題認(rèn)識(shí)的視角只能永

7、遠(yuǎn)停留在解題方法這一狹隘的、低層次的范圍,站不高、看不遠(yuǎn),只是埋頭解題而不知道解題的真正用意,更不知道數(shù)學(xué)解題這一創(chuàng)造性思維活動(dòng)的主旋律和操縱中心是什么。由于一招一式的方法和技巧訓(xùn)練在很大程度上是機(jī)械性的,只能靠重復(fù)訓(xùn)練來掌握以至提高解題能力,因而導(dǎo)致大運(yùn)動(dòng)量的機(jī)械練習(xí)和“題海戰(zhàn)”,這實(shí)在是數(shù)學(xué)教學(xué)的一個(gè)誤區(qū)。單教授曾經(jīng)談到:解題主要是培養(yǎng)思維能力,而不是套用現(xiàn)成的結(jié)論。所以知識(shí)并不需要非常之多,重要在于靈活應(yīng)用。單教授在這里并沒有否定許多定理與結(jié)論的有用性,只是認(rèn)為“殺雞用牛刀”“有點(diǎn)可笑”。當(dāng)然上面課堂中的問題應(yīng)用等差數(shù)列求和公式還算不上“用牛刀殺雞”,但是就對(duì)學(xué)生的思維能力和培養(yǎng)而言,似

8、乎生1的作用要比直接套用公式來得更有效些,如果學(xué)生遇到一個(gè)問題總想著直接套用公式,可能在面對(duì)一些沒有公式可套或者需要自己推演“公式”的問題時(shí)就會(huì)茫然四顧、束手無策。我們經(jīng)常在考試后聽到學(xué)生類似的抱怨:某某題目老師沒講過:某某題目我們沒見過等等。其實(shí)產(chǎn)生這個(gè)后果和教師平時(shí)的教學(xué)有較大關(guān)系,在日常教學(xué)中老師總是有意無意地過度強(qiáng)調(diào)套用現(xiàn)成公式或結(jié)論的重要,學(xué)生長期耳濡目染,也養(yǎng)成了遇到一個(gè)新問題就想找出一個(gè)可供直接套用現(xiàn)成公式的習(xí)慣。然而許多數(shù)學(xué)問題卻要求學(xué)生能夠自己推導(dǎo)出需要的“公式”,更不必說實(shí)際生活中找不到公式可套的許多新的問題情境了。3.解題要追求“自然”.所謂“自然”,就是抓住問題的實(shí)質(zhì),

9、題目該怎么解就怎么解,不故弄玄虛,樸實(shí)自然。這里的“自然”。既有一個(gè)公認(rèn)的標(biāo)準(zhǔn),又有個(gè)體之間的差異性。在具體的教學(xué)當(dāng)中,可能出現(xiàn)對(duì)同一個(gè)問題,師生之間的解法有較大差異或者說學(xué)生的解法與教師課前的教學(xué)設(shè)計(jì)大相徑庭的情形,此時(shí)教師如何運(yùn)用教學(xué)智慧迅速理解學(xué)生意圖、采取相應(yīng)對(duì)策就顯得尤為重要。即使學(xué)生的解法是不完善的甚至是錯(cuò)誤的,教師也不應(yīng)簡單否定、一帶而過,而是要找出其中的合理性因素加以充分利用,拓展出新的解法,同時(shí)這對(duì)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感和態(tài)度的培養(yǎng)也是有益的。倘若學(xué)生采取了一種“生僻”的、不常見的方法正確解決了問題,教師更不宜否定其解法,強(qiáng)加給學(xué)生自己的解法;對(duì)這個(gè)學(xué)生而言,可能他的解法就是“自

10、然”,反而是教師強(qiáng)加的“解法”令他感到不“自然”。也就是說,這里的“自然”既有絕對(duì)意義,又有相對(duì)意義,在具體的教學(xué)實(shí)踐中需要靈活把握,而不是圖方便、“一刀切”。4.尊重學(xué)生個(gè)性化的解題經(jīng)驗(yàn).在數(shù)學(xué)課堂教學(xué)實(shí)踐中,我們經(jīng)??吹竭@樣一種現(xiàn)象:教師或者簡單否定或者不置可否,繼續(xù)提問,直到有學(xué)生的答案與教師想要的答案,最后由教師告訴學(xué)生的情形。實(shí)際上,前一種情形也是一種告訴,只不過是由學(xué)生告訴學(xué)生,改換了一個(gè)表現(xiàn)形式,對(duì)某些學(xué)生來說甚至還不如由教師直接告訴更節(jié)約時(shí)間。這種現(xiàn)象普遍產(chǎn)生的原因之一正是教師對(duì)學(xué)生的富有個(gè)性色彩的解題經(jīng)驗(yàn)沒有給以足夠的重視,只是盲目地追求“大一統(tǒng)”,將學(xué)生的解題思路統(tǒng)攝到自己的預(yù)設(shè)當(dāng)中。這種做法的弊端之一就是忽視了學(xué)生數(shù)學(xué)學(xué)習(xí)的獨(dú)特內(nèi)心體驗(yàn)。高中學(xué)生的個(gè)性漸趨成熟,他們學(xué)習(xí)數(shù)學(xué)、進(jìn)行數(shù)學(xué)解題是在一定程度的知識(shí)、生活經(jīng)驗(yàn)和主觀感受的基礎(chǔ)上進(jìn)行的,每個(gè)人的觀察、思考和解決問題的方式都有著或多或少的差異。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論