版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、二元一次不定方程的解法【摘要】本文主要通過(guò)三個(gè)實(shí)例詳盡而具體的說(shuō)明了二元一次不定方程的解法【關(guān)鍵詞】不定方程; 通解; 解法不定方程是數(shù)論中一個(gè)古老的分支,至今仍是一個(gè)很活躍的數(shù)學(xué)領(lǐng)域 中小學(xué)數(shù)學(xué)競(jìng)賽也常常因?yàn)槟承┎欢ǚ匠痰慕夥ㄇ擅疃氩欢ǚ匠虇?wèn)題 下面,就通過(guò)具體實(shí)例,來(lái)示范說(shuō)明一下不定方程的解法定義形如 的方程稱(chēng)為二元一次不定方程,求原方程的整數(shù)解的問(wèn)題叫做解二元一次不定方程定理1 原方程有整數(shù)解的充分必要條件是推論若,則原方程一定有整數(shù)解定理2 若,且 為原方程的一個(gè)整數(shù)解( 特解) ,則原方程的全部整數(shù)解( 通解) 都可表成 , 或 , 由上述定理可知,求不定原方程整數(shù)解的步驟是:
2、判定原方程是否有解: 當(dāng) 時(shí),原方程無(wú)整數(shù)解;當(dāng) 時(shí),原方程有整數(shù)解 在有整數(shù)解時(shí),方程同解變形,邊除以d,使原方程轉(zhuǎn)化為 的情形求特解,寫(xiě)通解 ( 注: 通解形式不唯一)可見(jiàn),求特解是解二元一次不定方程的關(guān)鍵首先,對(duì)方程的未知數(shù)系數(shù)較小,或系數(shù)與常數(shù)項(xiàng)有和、差、約數(shù)、倍數(shù)關(guān)系時(shí)觀察法是最簡(jiǎn)單易行的便捷方法例1 求不定方程 的整數(shù)解解 , 原方程有整數(shù)解 利用觀察法可知是這個(gè)方程的特解,因此方程的全部整數(shù)解是 ,( tZ) 其次,對(duì)于用觀察法看不出特解,或未知數(shù)系數(shù)較大時(shí),我們則可采用下列幾種方法: 1、觀察法這種方法很簡(jiǎn)單, 它是通過(guò)觀察便能看出二元一次不定方程的特解的方法。下面看個(gè)例子:例
3、: 求不定方程 的整數(shù)解解: 根據(jù)二元一次不定方程有解的充要條件, 方程有整數(shù)解經(jīng)觀察得: 是一個(gè)特解方程的所有整數(shù)解為: 從例題中我們看出, 這種方法顯然很簡(jiǎn)便, 對(duì)于一些較簡(jiǎn)單的二元一次不定方程易觀察也很適用, 但它畢竟也有弊端, 有些方程不容易觀察, 所以我們還需尋求新的方法。2. 分離整數(shù)法此法主要是通過(guò)解未知數(shù)的系數(shù)中絕對(duì)值較小的未知數(shù),將其結(jié)果中整數(shù)部分分離出來(lái),則剰下部分仍為整數(shù),令其為一個(gè)新的整數(shù)變量,據(jù)此類(lèi)推,直到能直接觀察出特解的不定方程為止,再追根溯源,求出原方程的特解例: 解不定方程 解 , 原方程有整數(shù)解先用x,y 的系數(shù)中較小的37 去除方程的兩邊,并解出x,得 除
4、以37 再把上式右邊y 的系數(shù)和常數(shù)項(xiàng)的整數(shù)部分分離出來(lái),寫(xiě)成除以37 由于x,y 都是整數(shù),也是整數(shù),則除以37也一定是整數(shù),則可令 ( 由于此時(shí) 12 + 4 3除37 Z) ,則有 補(bǔ)充說(shuō)明假設(shè)通過(guò)原式中未看出特解,可令 除除4 則t除 ,有 ,從而有 ,可推得這樣得原不定方程的特解為 , 原不定方程的通解為 ,( tZ) 3. 逐漸減小系數(shù)法此法主要是利用變量替換,使不定方程未知數(shù)的系數(shù)逐漸減小,直到出現(xiàn)一個(gè)未知量的系數(shù)為 1 的不定方程為止,直接解出這樣的不定方程( 或可以直接能用觀察法得到特解的不定方程為止,再依次反推上去) 得到原方程的通解例: 解不定方程 解 , 原方程有整數(shù)解
5、由 ,用y 來(lái)表示x,得 37 = 1 3y + 12 + 4y除37 則令 ,即 由 ,用k 來(lái)表示y,得 除4 則令 ,得 將上述結(jié)果一一代回,得原方程的通解為 ,( tZ) 4. 輾轉(zhuǎn)相除法此法主要借助輾轉(zhuǎn)相除式逆推求特解例: 解不定方程 解 原方程有整數(shù)解用輾轉(zhuǎn)相除法求特解: 從最后一個(gè)式子向上逆推得到 , 則特解為 , 通解為 , ,或改寫(xiě)為 ,( tZ) 5. 歐拉算法受輾轉(zhuǎn)相除法的啟示,此題可簡(jiǎn)化為采用歐拉算法的方法求解 其實(shí)質(zhì)仍是找出( a,b) 表為a,b 的倍數(shù)和時(shí)的倍數(shù),從而求出特解例5 解不定方程 解 , 原方程有整數(shù)解(見(jiàn)抄) ,則特解為 , 通解為 , 或改寫(xiě)為 ,
6、( tZ) 6. 同余替換法此法主要是取未知量系數(shù)絕對(duì)值較小者作為模,對(duì)另一系數(shù)和常數(shù)項(xiàng)取同余式,將其值替換為較小的同余值,構(gòu)成一個(gè)新的不定方程,據(jù)此類(lèi)推,直到某不定方程的一個(gè)變量系數(shù)為1 為止,然后一一代回,直接求出原不定方程的通解例: 解不定方程 解 , 原方程有整數(shù)解(見(jiàn)抄)則原方程轉(zhuǎn)化為 ,即,將其代入( 1) ,有 再將上式代入原方程,有 ,綜上得原方程的通解為 ,( tZ) 最后,對(duì)于未知數(shù)系數(shù)和常數(shù)項(xiàng)之間有某些特殊關(guān)系的不定方程,如常數(shù)項(xiàng)可以拆成兩未知數(shù)系數(shù)的倍數(shù)的和或差的不定方程,可以采用分解常數(shù)項(xiàng)的方法去求解方程例:: 解不定方程 解 , , , 原方程的通解為 , 定理:
7、考慮二元一次方程 ( 1)其中a、b、c是整數(shù), 且 則方程( 1) 的一切整數(shù)解可以表示成其中t=0、1, 2, , k= c除b證明:( ) 令 除b, 那么 即( 2) 是( ) 的解.( ) 設(shè) 是方程( 1) 的任一整數(shù)解, 則則 ,可設(shè) , 則 除a)除a) 除a)由于 是方程( 1) 的整數(shù)解, 故 必為整數(shù), 從而 除a也必為整數(shù)。又 , 故 , 可設(shè) 除a, 得 , .因此, x, y可表示成( 2) 的形式。由( ) 、( ) 知,( 2) 式表示了方程( 1) 的一切整數(shù)解, 證畢。推論: 將定理中條件 換為 時(shí), 方程( 1) 的一切整數(shù)解可表示成當(dāng)方程系數(shù) 和 均不成
8、立時(shí), 可以用行列式變換使得第一項(xiàng)或第二項(xiàng)的系數(shù)能整除c。再根據(jù)定理或推論來(lái)求出原方程的整數(shù)解。 例:.求 的一切整數(shù)解。解: 因?yàn)?且, 由定理可得所求解為 其中 例:. 求 的一切整數(shù)解。解: 107和38均不能整除30, 故不能直接套用定理。我們做行列式變換:(抄)這樣原方程可化為:由于 , 這樣, 由定理知原方程的解為: 即 ,其中 7、參數(shù)法這種方法是解出系數(shù)絕對(duì)值較小的未知數(shù), 將其寫(xiě)成幾部分和的形式, 然后引進(jìn)參數(shù), 于是便又得到一個(gè)新的不定方程, 這時(shí)用觀察法便可得出新方程的特解, 然后再用代入法就可得出原方程的特解, 進(jìn)而求出通解。下面用例子說(shuō)明此種方法的解題過(guò)程:例: 求
9、整數(shù)解解: 從系數(shù)絕對(duì)值較小的x 解之得:(見(jiàn)抄)于是得到新不定方程這時(shí)用觀察法便知,是方程的特解將 代入得所以原方程的通解為: , 注: 有時(shí)要求求不定方程的正整數(shù)解, 這時(shí)只需x , y均大于0 解不等式組便可求t 的范圍, 然后t 取整數(shù)就可以得出正整數(shù)解了??傊?,二元一次不定方程的解法很多,也很巧妙、有趣要想靈活的去求解二元一次不定方程,除了要掌握各種具體的解法以外,還要學(xué)會(huì)具體問(wèn)題具體分析,并要具有一定的將所學(xué)知識(shí)融會(huì)貫通的能力 不定方程是數(shù)論中一個(gè)古老的分支,至今仍是一個(gè)很活躍的數(shù)學(xué)領(lǐng)域.中小學(xué)數(shù)學(xué)競(jìng)賽也常常因?yàn)槟承┎欢ǚ匠痰慕夥ㄇ擅疃氩欢ǚ匠虇?wèn)題.下面,我就通過(guò)三道具體實(shí)例,來(lái)示范說(shuō)明一下不定方程的解法.定義形如 的方程稱(chēng)為二元一次不定方程,求原方程的整數(shù)解的問(wèn)題叫做解二元一次不定方程.定理1原方程有整數(shù)解的充分必要條件是 .推論若 ,則原方程一定有整數(shù)解.定理2若 ,且 為原方程的一個(gè)整數(shù)解(特解),則原方程的全部整數(shù)解(通解)都可表成 或xy=xy00+-batt,(tZ).由上述定理可知,求不定原方程整數(shù)解的步驟是: .判定原方程是否有解:當(dāng) 時(shí),原方程無(wú)整數(shù)解;當(dāng) 時(shí),原方程有整數(shù)解.在有整數(shù)解時(shí),方程同解變形,兩邊除以d,使原方程轉(zhuǎn)化為 的情形.求特解,寫(xiě)通解.(注:通解形式不唯一)可見(jiàn),求特解是解二元一次不定方程的關(guān)鍵.首
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 胎記的臨床護(hù)理
- 兒童學(xué)習(xí)能力障礙的健康宣教
- 《機(jī)械制造基礎(chǔ)》課件-05篇 第八單元 超精密加工
- 《機(jī)械設(shè)計(jì)基礎(chǔ)》課件-第5章
- 《計(jì)算機(jī)表格處理》課件
- 【培訓(xùn)課件】青果園 萬(wàn)名大學(xué)生創(chuàng)意創(chuàng)業(yè)園區(qū)項(xiàng)目介紹
- 《認(rèn)識(shí)HS商品分類(lèi)》課件
- 社區(qū)戶(hù)外旅游組織計(jì)劃
- 生物學(xué)課程的擴(kuò)展與拓展計(jì)劃
- 提升師生互動(dòng)頻率的計(jì)劃
- 出納優(yōu)秀員工理由
- 地下工程概論-課件匯總?cè)譸pt完整版課件最全教學(xué)教程整套課件全書(shū)電子教案
- 酒店工程裝飾裝修施工方案參考模板范本
- 超市便利店缺貨登記表
- [QC成果]高大模板支撐系統(tǒng)施工質(zhì)量控制
- 煤礦區(qū)隊(duì)安全風(fēng)險(xiǎn)管控日分析制度辦法
- (完整版)霍夫斯塔德文化差異五個(gè)維度
- 《地形對(duì)聚落及交通線路分布的影響》教學(xué)設(shè)計(jì)
- 《中國(guó)旅游地理》新課程標(biāo)準(zhǔn)
- seagull船員英語(yǔ)STCW甲板操作級(jí)答案
- 腦出血后遺癥臨床路徑
評(píng)論
0/150
提交評(píng)論