32《空間角》課件(新人教選修2-1)_第1頁
32《空間角》課件(新人教選修2-1)_第2頁
32《空間角》課件(新人教選修2-1)_第3頁
32《空間角》課件(新人教選修2-1)_第4頁
32《空間角》課件(新人教選修2-1)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入3.2利用向量解決 空間角問題123( ,)aa a a1.若,123( ,),bb b b則:數(shù)量積: a b 1 1223 3aba ba b夾角公式: cosa b 111222( ,), (,)A x y zB xyz2.若,則:212121(,)xx yy zzAB 線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入| |a bab 1 12 23 3222222123123aba ba baaabbb| | cos,aba b異面直線所成角的范圍: 0,2ABCD1D,CD AB 與 的關(guān)系?思考:思考:,DC

2、AB 與 的關(guān)系?結(jié)論:結(jié)論:coscos,CD AB |題型一:線線角題型一:線線角線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入例一:090 ,Rt ABCBCAABC中,現(xiàn)將沿著111ABCABC平面的法向量平移到位置,已知1BCCACC,111111ABACDF取、的中點、 ,11BDAF求與所成的角的余弦值.A1AB1BC1C1D1F題型一:線線角題型一:線線角線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入解:以點C為坐標(biāo)原點建立空間直角坐標(biāo)系 如圖所示,設(shè) 則: CxyzA1AB1BC1C1D1Fxyz11CC (1,0,0), (0,1,0),AB11

3、11 1( ,0, ),( ,1)22 2Fa D所以:11(,0,1),2AF 111( ,1)22BD 11cos,AF BD 1111|AF BDAFBD 113041053421BD1AF所以 與 所成角的余弦值為3010題型一:線線角題型一:線線角練習(xí):題型一:線線角題型一:線線角在長方體 中,1111ABCDABC D58,ABAD = ,14,AA 1112,MBCB M 為上的一點,且1NAD點 在線段上,1.ADAN1.ADAM(1)求證:ABCD1A1B1C1DMNxyz(0,0,0),A(5,2,4),AM 1(0,8, 4),AD 10AM AD 1.ADAMADANM

4、(2)求與平面所成的角.1(0,0,4),A(0,8,0),D(5,2,4)M題型二:線面角題型二:線面角直線與平面所成角的范圍: 0,2ABO, n BA 與 的關(guān)系?思考:思考:n結(jié)論:結(jié)論:sincos, n AB |題型二:線面角題型二:線面角線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入例二:題型二:線面角題型二:線面角在長方體 中,1111ABCDABC D58,ABAD = ,14,AA 112,MBCB M 為上的一點,且1NAD點 在線段上,1.ADAN1.ADAM(1)求證:ABCD1A1B1C1DMNxyz(0,0,0),A(0,8,0),AD 1(0,8,

5、 4),AD ADANM(2)求與平面所成的角.1(0,0,4),A(0,8,0),D線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入1cos,AD AD 2 55ADANM與平面所成角的正弦值是2 55練習(xí): 1111ABCDABC D的棱長為1.111.B CAB C求與 面所 成 的 角題型二:線面角題型二:線面角正方體ABCD1A1B1C1D線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入題型三:二面角題型三:二面角二面角的范圍:0, 1n2n 2n 1ncos12|cos,|n n cos12|cos,|n n ABO關(guān)鍵:觀察二面角的范圍關(guān)鍵:觀察二面角的范

6、圍線線角線線角復(fù)習(xí)復(fù)習(xí)線面角線面角二面角二面角小結(jié)小結(jié)引入引入題型三:二面角題型三:二面角,1,1,2.AABCD SAABBCADSCDSBA0例三如所示,ABC D 是一直角梯形, ABC =90S平面求面與面所成二面角的余弦值A(chǔ)BCDS,1,1,2.AABCD SAABBCADSCDSBA0例三如所示, A B C D 是一直角梯形,A B C = 90S平面求面與面所成二面角的余弦值A(chǔ)BCDSxyz解: 建立空直角坐系A(chǔ)-xyz如所示,A( 0, 0, 0) ,11(1,0),(0, 1)22CDSD C ( -1, 1, 0) ,1,0),2D ( 0,(0,0,1)S11(0,0)2SBAnAD易知面的法向量設(shè)平面2( , , ),SCDnx y z 的法向量22,nCD nSD 由得:0202yxyz22yxyz2(1,2,1)n 任取1212126cos,3|n nn nnn 63即所求二面角得余弦值是小結(jié):小結(jié):1.異面直線所成角:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論