版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,點A、B、C在上,∠A=72°,則∠OBC的度數(shù)是()A.12° B.15° C.18° D.20°2.邊長相等的正方形與正六邊形按如圖方式拼接在一起,則的度數(shù)為()A. B. C. D.3.分別寫有數(shù)字0,﹣1,﹣2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負數(shù)的概率是()A. B. C. D.4.為測量某河的寬度,小軍在河對岸選定一個目標點A,再在他所在的這一側選點B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD與BC的交點E,如圖所示.若測得BE=90m,EC=45m,CD=60m,則這條河的寬AB等于()A.120m B.67.5m C.40m D.30m5.若是方程的兩根,則實數(shù)的大小關系是()A. B. C. D.6.如圖,在平行四邊形中,為的中點,為上一點,交于點,,則的長為()A. B. C. D.7.為了估計拋擲某枚啤酒瓶蓋落地后凸面向下的概率,小明做了大量重復試驗.經(jīng)過統(tǒng)計得到凸面向上的次數(shù)為次,凸面向下的次數(shù)為次,由此可估計拋擲這枚啤酒瓶蓋落地后凸面向下的概率約為()A. B. C. D.8.下列一元二次方程中,有兩個不相等實數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=09.我們知道,一元二次方程可以用配方法、因式分解法或求根公式進行求解.對于一元三次方程ax3+bx2+cx+d=0(a,b,c,d為常數(shù),且a≠0)也可以通過因式分解、換元等方法,使三次方程“降次”為二次方程或一次程,進而求解.這兒的“降次”所體現(xiàn)的數(shù)學思想是()A.轉化思想 B.分類討論思想C.數(shù)形結合思想 D.公理化思想10.下列成語中描述的事件必然發(fā)生的是()A.水中撈月 B.日出東方 C.守株待兔 D.拔苗助長11.下列各數(shù):-2,,,,,,0.3010010001…,其中無理數(shù)的個數(shù)是()個.A.4 B.3 C.2 D.112.如圖,函數(shù)的圖象與軸的一個交點坐標為(3,0),則另一交點的橫坐標為()A.﹣4 B.﹣3 C.﹣2 D.﹣1二、填空題(每題4分,共24分)13.已知正方形ABCD的邊長為,分別以B、D為圓心,以正方形的邊長為半徑在正方形內畫弧,得到如圖所示的陰影部分,若隨機向正方形ABCD內投擲一顆石子,則石子落在陰影部分的概率為_____.(結果保留π)14.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.15.已知拋物線與軸的一個交點坐標為,則一元二次方程的根為______________.16.已知二次函數(shù)y=-x-2x+3的圖象上有兩點A(-7,),B(-8,),則▲.(用>、<、=填空).17.計算:=_____________18.如圖,直線,等腰直角三角形的三個頂點分別在,,上,90°,交于點,已知與的距離為2,與的距離為3,則的長為________.三、解答題(共78分)19.(8分)如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.(1)請直接寫出D點的坐標.(2)求二次函數(shù)的解析式.(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.20.(8分)如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.(1)求拋物線的解析式;(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內一點,當以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標.21.(8分)如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的頂點均落在格點上.(1)將△ABC繞點O順時針旋轉90°后,得到△A1B1C1.在網(wǎng)格中畫出△A1B1C1;(2)求線段OA在旋轉過程中掃過的圖形面積;(結果保留π)22.(10分)如圖,在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.(1)把△ABC繞著點C逆時針旋轉90°,畫出旋轉后對應的△A1B1C;(2)求△ABC旋轉到△A1B1C時線段AC掃過的面積.23.(10分)已知關于的一元二次方程.(1)求證:對于任意實數(shù),方程總有兩個不相等的實數(shù)根;(2)若方程的一個根是1,求的值及方程的另一個根.24.(10分)已知□ABCD邊AB、AD的長是關于x的方程=0的兩個實數(shù)根.(1)當m為何值時,四邊形ABCD是菱形?(2)當AB=3時,求□ABCD的周長.25.(12分)拋物線與軸交于兩點(點在點的左側),與軸交于點.已知,拋物線的對稱軸交軸于點.(1)求出的值;(2)如圖1,連接,點是線段下方拋物線上的動點,連接.點分別在軸,對稱軸上,且軸.連接.當?shù)拿娣e最大時,請求出點的坐標及此時的最小值;(3)如圖2,連接,把按照直線對折,對折后的三角形記為,把沿著直線的方向平行移動,移動后三角形的記為,連接,,在移動過程中,是否存在為等腰三角形的情形?若存在,直接寫出點的坐標;若不存在,請說明理由.26.如圖,在淮河的右岸邊有一高樓,左岸邊有一坡度的山坡,點與點在同一水平面上,與在同一平面內.某數(shù)學興趣小組為了測量樓的高度,在坡底處測得樓頂?shù)难鼋菫?,然后沿坡面上行了米到達點處,此時在處測得樓頂?shù)难鼋菫椋髽堑母叨?(結果保留整數(shù))(參考數(shù))
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)圓周角定理可得∠BOC的度數(shù),根據(jù)等腰三角形的性質即可得答案.【詳解】∵點A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故選:C.【點睛】本題考查圓周角定理及等腰三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;熟練掌握圓周角定理是解題關鍵.2、B【解析】利用多邊形的內角和定理求出正方形與正六邊形的內角和,進而求出每一個內角,根據(jù)等腰三角形性質,即可確定出所求角的度數(shù).【詳解】正方形的內角和為360°,每一個內角為90°;
正六邊形的內角和為720°,每一個內角為120°,
則=360°-120°-90°=150°,因為AB=AC,所以==15°
故選B【點睛】此題考查了多邊形內角和外角,等腰三角形性質,熟練掌握多邊形的內角和定理是解本題的關鍵.3、B【解析】試題分析:根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數(shù)的概率是.故選B.考點:概率.4、A【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE∽△DCE,∴.∵BE=90m,EC=45m,CD=60m,∴故選A.5、A【分析】設,可判斷拋物線開口向下,m、n是其與x軸交點的橫坐標,a、b則是拋物線與直線y=2的交點橫坐標,畫出函數(shù)草圖即可判斷.【詳解】設,可判斷拋物線開口向下,m、n是其與x軸交點的橫坐標,a、b則是拋物線與直線y=2的交點橫坐標,畫出函數(shù)草圖如下:從函數(shù)圖象可以看出:故選:A【點睛】本題考查的是二次函數(shù)與一元二次方程的關系,掌握拋物線與x軸的交點的橫坐標為y=0時,一元二次方程的根是關鍵.6、B【分析】延長,交于,由,,即可得出答案.【詳解】如圖所示,延長CB交FG與點H∵四邊形ABCD為平行四邊形∴BC=AD=DF+AF=6cm,BC∥AD∴∠FAE=∠HBE又∵E是AB的中點∴AE=BE在△AEF和△BEH中∴△AEF≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF∽△CGH∴∴CG=4AG=12cm∴AC=AG+CG=15cm故答案選擇B.【點睛】本題考查了全等三角形的判定以及相似三角形的判定與性質,熟練掌握相似三角形的判定與性質是解決本題的關鍵.7、D【分析】由向上和向下的次數(shù)可求出向下的頻率,根據(jù)大量重復試驗下,隨機事件發(fā)生的頻率可以作為概率的估計值即可得答案.【詳解】∵凸面向上的次數(shù)為420次,凸面向下的次數(shù)為580次,∴凸面向下的頻率為580÷(420+580)=0.58,∵大量重復試驗下,隨機事件發(fā)生的頻率可以作為概率的估計值,∴估計拋擲這枚啤酒瓶蓋落地后凸面向下的概率約為0.58,故選:D.【點睛】本題考查利用頻率估計概率,熟練掌握大量重復試驗下,隨機事件發(fā)生的頻率可以作為概率的估計值是解題關鍵.8、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.9、A【分析】解高次方程的一般思路是逐步降次,所體現(xiàn)的數(shù)學思想就是轉化思想.【詳解】由題意可知,解一元三次方程的過程是將三次轉化為二次,二次轉化為一次,從而解題,在解題技巧上是降次,在解題思想上是轉化思想.故選:A.【點睛】本題考查高次方程;通過題意,能夠從中提取出解高次方程的一般方法,同時結合解題過程分析出所運用的解題思想是解題的關鍵.10、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、水中撈月,是不可能事件;B、日出東方,是必然事件;C、守株待兔,是隨機事件;D、拔苗助長,是不可能事件;故選B.【點睛】本題主要考查隨機事件和必然事件的概念,解決本題的關鍵是要熟練掌握隨機事件和必然事件的概念.11、B【分析】無理數(shù),即非有理數(shù)之實數(shù),不能寫作兩整數(shù)之比.若將它寫成小數(shù)形式,小數(shù)點之后的數(shù)字有無限多個,并且不會循環(huán),也就是說它是無限不循環(huán)小數(shù).常見的無理數(shù)有大部分的平方根、π等.【詳解】根據(jù)無理數(shù)的定義,下列各數(shù):-2,,,,,,0.3010010001…,其中無理數(shù)是:,,0.3010010001…故選:B【點睛】考核知識點:無理數(shù).理解無理數(shù)的定義是關鍵.12、D【分析】根據(jù)到函數(shù)對稱軸距離相等的兩個點所表示的函數(shù)值相等可求解.【詳解】根據(jù)題意可得:函數(shù)的對稱軸直線x=1,則函數(shù)圖像與x軸的另一個交點坐標為(-1,0).故橫坐標為-1,故選D考點:二次函數(shù)的性質二、填空題(每題4分,共24分)13、【分析】先求出空白部分面積,進而得出陰影部分面積,再利用石子落在陰影部分的概率=陰影部分面積÷正方形面積,進而得出答案.【詳解】∵扇形ABC中空白面積=,∴正方形中空白面積=2×(2﹣)=4﹣π,∴陰影部分面積=2﹣(4﹣π)=π﹣2,∴隨機向正方形ABCD內投擲一顆石子,石子落在陰影部分的概率=.故答案為:.【點睛】本題主要考查扇形的面積公式和概率公式,通過割補法,求出陰影部分面積,是解題的關鍵.14、【分析】根據(jù)菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=.故答案是:.【點睛】此題主要考查了扇形的面積計算以及全等三角形的判定與性質等知識,根據(jù)已知得出四邊形EBFD的面積等于△ABD的面積是解題關鍵.15、,【分析】將x=2,y=1代入拋物線的解析式可得到c=?8a,然后將c=?8a代入方程,最后利用因式分解法求解即可.【詳解】解:將x=2,y=1代入得:2a+2a+c=1.解得:c=?8a.將c=?8a代入方程得:∴.∴a(x?2)(x+2)=1.∴x1=2,x2=-2.【點睛】本題主要考查的是拋物線與x軸的交點,求得a與c的關系是解題的關鍵.16、>.【解析】根據(jù)已知條件求出二次函數(shù)的對稱軸和開口方向,再根據(jù)點A、B的橫坐標的大小即可判斷出y1與y1的大小關系:∵二次函數(shù)y=﹣x1﹣1x+3的對稱軸是x=﹣1,開口向下,∴在對稱軸的左側y隨x的增大而增大.∵點A(﹣7,y1),B(﹣8,y1)是二次函數(shù)y=﹣x1﹣1x+3的圖象上的兩點,且﹣7>﹣8,∴y1>y1.17、-1【分析】根據(jù)二次根式的性質和負整數(shù)指數(shù)冪的運算法則進行計算即可.【詳解】故答案為:-1.【點睛】此題主要考查了二次根式的性質以及負整數(shù)指數(shù)冪的運算法則,熟練掌握其性質和運算法則是解此題的關鍵.18、【分析】作AF⊥,BE⊥,證明△ACF≌△CBE,求出CE,根據(jù)勾股定理求出BC、AC,作DH⊥,根據(jù)DH∥AF證明△CDH∽△CAF,求出CD,再根據(jù)勾股定理求出BD.【詳解】如圖,作AF⊥,BE⊥,則∠AFC=BEC=90°,由題意得BE=3,AF=2+3=5,∵△是等腰直角三角形,90°,∴AC=BC,∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∴△ACF≌△CBE,∴CE=AF=5,CF=BE=3,∴,作DH⊥,∴DH∥AF∴△CDH∽△CAF,∴,∴,∴CD=,∴BD=,故答案為:.【點睛】此題考查等腰直角三角形的性質,全等三角形的判定及性質,相似三角形的判定及性質,平行線間的距離處處相等的性質,正確引出輔助線解決問題是解題的關鍵.三、解答題(共78分)19、(1)D(﹣2,3);(2)二次函數(shù)的解析式為y=﹣x2﹣2x+3;(3)一次函數(shù)值大于二次函數(shù)值的x的取值范圍是x<﹣2或x>1.【詳解】試題分析:(1)由拋物線的對稱性來求點D的坐標;(2)設二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c常數(shù)),把點A、B、C的坐標分別代入函數(shù)解析式,列出關于系數(shù)a、b、c的方程組,通過解方程組求得它們的值即可;(3)由圖象直接寫出答案.試題解析:(1)∵如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,∴對稱軸是x==﹣1.又點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,∴D(﹣2,3);(2)設二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c常數(shù)),根據(jù)題意得,解得,所以二次函數(shù)的解析式為y=﹣x2﹣2x+3;(3)如圖,一次函數(shù)值大于二次函數(shù)值的x的取值范圍是x<﹣2或x>1.考點:1、拋物線與x軸的交點;2、待定系數(shù)法;3、二次函數(shù)與不等式(組).20、(1)y=﹣x2+﹣x+2;(2);(3)N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根據(jù)對稱軸公式列出等式,帶點到拋物線列出等式,解出即可;(2)先求出A、B、C的坐標,從而求出D的坐標算出BD的解析式,根據(jù)題意畫出圖形,設出P、G的坐標代入三角形的面積公式得出一元二次方程,聯(lián)立方程組解出即可;(3)分類討論①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),(ⅱ)當點M在y軸右側時,②當AM是正方形的對角線時,分別求出結果綜合即可.【詳解】(1)拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點B(1,0).∴,解得,∴拋物線的解析式為:y=﹣x2+﹣x+2;(2)拋物線y=﹣x2﹣x+2與x軸交于點A和點B,與y軸交于點C,∴A(﹣1,0),B(1,0),C(0,2).∵點D為線段AC的中點,∴D(﹣2,1),∴直線BD的解析式為:,過點P作y軸的平行線交直線EF于點G,如圖1,設點P(x,),則點G(x,).∴,當x=﹣時,S最大,即點P(﹣,),過點E作x軸的平行線交PG于點H,則tan∠EBA=tan∠HEG=,∴,故為最小值,即點G為所求.聯(lián)立解得,(舍去),故點E(﹣,),則PG﹣的最小值為PH=.(3)①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),如圖2,當點M在第二象限時,過點A作y軸的平行線GH,過點M作MG⊥GH于點G,過點N作HN⊥GH于點H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,當x=時,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).當x=時,同理可得N(,),當點M在第三象限時,同理可得N(,).(ⅱ)當點M在y軸右側時,如圖3,點M在第一象限時,過點M作MH⊥x軸于點H設AH=b,同理△AHM≌△MGN(AAS),則點M(﹣1+b,b﹣).將點M的坐標代入拋物線解析式可得:b=(負值舍去)yN=y(tǒng)M+GM=y(tǒng)M+AH=,∴N(﹣,).當點M在第四象限時,同理可得N(﹣,-).②當AM是正方形的對角線時,當點M在y軸左側時,過點M作MG⊥對稱軸于點G,設對稱軸與x軸交于點H,如圖1.∵∠AHN=∠MGN=90°,∠NAH=∠MNG,MN=AN,∴△AHN≌△NGN(AAS),設點N(﹣,π),則點M(﹣,),將點M的坐標代入拋物線解析式可得,(舍去),∴N(,),當點M在y軸右側時,同理可得N(,).綜上所述:N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣).【點睛】本題考查二次函數(shù)與一次函數(shù)的綜合題型,關鍵在于熟練掌握設數(shù)法,合理利用相似全等等基礎知識.21、(1)見解析;(2)掃過的圖形面積為2π.【解析】(1)先確定A、B、C三點分別繞O點旋轉90°后的點的位置,再順次連接即可得到所求圖形;(2)先運用勾股定理求解出OA的長度,再求以OA為半徑、圓心角為90°的扇形面積即可.【詳解】(1)如圖,先確定A、B、C三點分別繞O點旋轉90°后的點A1、B1、C1,再順次連接即可得到所求圖形,△A1B1C1即為所求三角形;(2)由勾股定理可知OA=,線段OA在旋轉過程中掃過的圖形為以OA為半徑,∠AOA1為圓心角的扇形,則S扇形OAA1=答:掃過的圖形面積為2π.【點睛】本題結合網(wǎng)格線考查了旋轉作圖以及扇形面積公式,熟記相關公式是解題的關鍵.22、(1)見解析;(2)2π【分析】(1)根據(jù)旋轉角度、旋轉中心、旋轉方向找出各點的對稱點,順次連接即可;
(2)根據(jù)扇形的面積公式求解即可.【詳解】(1)如圖所示,△A1B1C即為所求;(2)∵CA=,∴S==2π.【點睛】本題考查旋轉作圖的知識,難度不大,注意掌握旋轉作圖的三要素,旋轉中心、旋轉方向、旋轉角度.23、(1)見解析;(2),【分析】(1)將方程轉化為一般式,然后得出根的判別式,得出判別式為非負數(shù)得出答案;(2)將代入方程求出的值,然后根據(jù)解方程的方法得出另一個根.【詳解】解:(1)∴對于任意實數(shù),方程總有兩個不相等的實數(shù)根;(2)當時,,∴【點睛】本題考查了解一元二次的方程以及判別式.24、(1);(2)1【分析】(1)由菱形的四邊相等知方程有兩個相等的實數(shù)根,據(jù)此利用根的判別式求解可得,注意驗根;
(2)由AB=3知方程的一個解為3,代入方程求出m的值,從而還原方程,再利用根與系數(shù)的關系得出AB+AD的值,從而得出答案.【詳解】解:(1)若四邊形ABCD是菱形,則AB=AD,
所以方程有兩個相等的實數(shù)根,
則△=(-m)2-4×1×12=0,
解得m=,檢驗:當m=時,x=,符合題意;當m=時,x=,不符合題意,故舍去.綜上所述,當m為時,四邊形ABCD是菱形.
(2)∵AB=3,
∴9-3m+12=0,
解得m=7,
∴方程為x2-7x+12=0,
則AB+AD=7,
∴平行四邊形ABCD的周長為2(AB+AD)=1.【點睛】本題主要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年西藏道路客運從業(yè)資格證模擬考試答案
- 2021年淄博市桓臺縣索鎮(zhèn)第一中學高三語文二模試卷及答案解析
- 天然氣使用安全投入
- 汽車零部件招投標授權書
- 汽車制造業(yè)消防安全管理準則
- 旅游F部業(yè)務管理辦法
- 醫(yī)療衛(wèi)生資金撥付守則
- 美容診所技師聘用合同范例
- 專題01 三角形(7大基礎題+3大提升題)(原卷版)-2024-2025學年八年級數(shù)學上學期期中真題分類匯編
- 傳染病醫(yī)院護士雇傭模板
- 消防演練方案腳本
- 涵洞檢查評定表
- 幼兒園健康課件ppt
- 衛(wèi)健委2020年落實婦女兒童發(fā)展規(guī)劃情況的匯報
- 白蛋白的合理使用(專業(yè)應用)
- 不同季節(jié)的花(共27張PPT)課件
- 綠化起重吊裝專項方案
- 計算機網(wǎng)絡技術ppt課件(完整版)
- DB62∕T 4339-2021 高速公路工地試驗室標準化指南
- 安然納米會員手冊
- 發(fā)散思維與聚合思維(課堂PPT)
評論
0/150
提交評論