2024屆江蘇省南京市江浦高級中學(xué)、六合高級中學(xué)、江寧高級中學(xué)三校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆江蘇省南京市江浦高級中學(xué)、六合高級中學(xué)、江寧高級中學(xué)三校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆江蘇省南京市江浦高級中學(xué)、六合高級中學(xué)、江寧高級中學(xué)三校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆江蘇省南京市江浦高級中學(xué)、六合高級中學(xué)、江寧高級中學(xué)三校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆江蘇省南京市江浦高級中學(xué)、六合高級中學(xué)、江寧高級中學(xué)三校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省南京市江浦高級中學(xué)、六合高級中學(xué)、江寧高級中學(xué)三校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”2.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.643.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學(xué)家朱載堉,他當(dāng)時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.2204.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.5.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題6.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.7.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則8.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.49.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.10.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.11.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知平面直角坐標(biāo)系內(nèi)一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構(gòu)成圖形的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),,對任意的,都有成立,則實數(shù)的取值范圍是______14.設(shè)有下列命題:①當(dāng),時,不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)15.觀察式子:,,,由此歸納,可猜測一般性的結(jié)論為______.16.已知命題,則命題的的否定是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,底面ABCD,E為BP的中點,,(1)證明:平面PAD;(2)求平面EAC與平面PAC夾角的余弦值18.(12分)分別求出滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)焦點在y軸,短軸長為2,離心率為;(2)短軸一端點P與兩焦點,連線所構(gòu)成的三角形為等邊三角形19.(12分)已知函數(shù)在時有極值0.(1)求函數(shù)的解析式;(2)記,若函數(shù)有三個零點,求實數(shù)的取值范圍.20.(12分)已知梯形如圖甲所示,其中,,,四邊形是邊長為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點在線段上,且與平面所成角的正弦值為,求線段的長度.21.(12分)已知函數(shù).(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.22.(10分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【題目詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當(dāng)二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C2、B【解題分析】設(shè)等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項公式得到,即可求出,再根據(jù)計算可得;【題目詳解】解:設(shè)等比數(shù)列公比為,因為、,所以,所以;故選:B3、C【解題分析】依題意,每一個單音的頻率構(gòu)成一個等比數(shù)列,由,算出公比,結(jié)合,即可求出.【題目詳解】設(shè)第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構(gòu)成一個等比數(shù)列,設(shè)公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【題目點撥】關(guān)鍵點點睛:本題考查等比數(shù)列通項公式的運算,解題的關(guān)鍵是分析題意將其轉(zhuǎn)化為等比數(shù)列的知識,考查學(xué)生的計算能力,屬于基礎(chǔ)題.4、A【解題分析】將利用、、表示,再利用空間向量的加法可得出關(guān)于、、的表達(dá)式,進(jìn)而可求得的值.【題目詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.5、D【解題分析】因為是真命題,是假命題,所以是假命題,選項A錯誤,是真命題,選項B錯誤,是假命題,選項C錯誤,是真命題,選項D正確,故選D.考點:真值表的應(yīng)用.6、B【解題分析】求出,進(jìn)而求出,之間的關(guān)系,即可求解結(jié)論【題目詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長恰等于實軸的長,,,故選:B7、D【解題分析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運算法則分別計算函數(shù)的導(dǎo)數(shù),即可判斷選項.【題目詳解】A.若,則,故A錯誤;B.若,則,故B錯誤;C.若,則,故C錯誤;D.若,則,故D正確.故選:D8、B【解題分析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【題目詳解】因為可化為,所以,則.故選:B.【題目點撥】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎(chǔ)題.9、B【解題分析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【題目詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B10、A【解題分析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A11、D【解題分析】根據(jù)直線、平面的位置關(guān)系,應(yīng)用定義法判斷兩個條件之間的充分、必要性.【題目詳解】當(dāng),時,直線l可與平行、相交,故不一定成立,即充分性不成立;當(dāng),時,直線l可在平面內(nèi),故不一定成立,即必要性不成立.故選:D.12、D【解題分析】先找臨界情況當(dāng)PQ與圓C相切時,,進(jìn)而可得滿足條件的點P形成的圖形為大圓(包括內(nèi)部),即求.【題目詳解】當(dāng)PQ與圓C相切時,,這種情況為臨界情況,當(dāng)P往外時無法找到點Q使,當(dāng)P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內(nèi)部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構(gòu)成圖形的面積為.故選:D.【題目點撥】關(guān)鍵點點睛:本題的關(guān)鍵是找出臨界情況時點所滿足的條件,進(jìn)而即可得到動點滿足條件的圖形,問題即可解決.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】首先求得函數(shù)在區(qū)間上的最大值,然后分離參數(shù),利用導(dǎo)函數(shù)求最值即可確定實數(shù)的取值范圍.【題目詳解】∵在上恒成立,∴當(dāng)時,取最大值1,∵對任意的,都有成立,∴在上恒成立,即在上恒成立,令,則,,∵在上恒成立,∴在上為減函數(shù),∵當(dāng)時,,故當(dāng)時,取最大值1,故,故答案為【題目點撥】本題考查的知識點是函數(shù)恒成立問題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的最值,難度中檔14、①③④【解題分析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設(shè),,利用指、對互化以及基本不等式即可判斷.【題目詳解】由于,,故恒成立,當(dāng)且僅當(dāng)時取等號,所以①正確;,當(dāng)且僅當(dāng),即時取等號,由于,所以②不正確;因為,所以,當(dāng)且僅當(dāng)時取等號,而,即函數(shù)的最大值為,所以③正確;設(shè),,則,,,,,所以,當(dāng)且僅當(dāng),時取等號,故的最小值為,所以④正確.故答案為:①③④【題目點撥】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.15、【解題分析】根據(jù)規(guī)律,不等式的左邊是個自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項,1為公差的等差數(shù)列,分子是以3為首項,2為公差的等差數(shù)列,由此可得結(jié)論【題目詳解】解:觀察可以發(fā)現(xiàn),第個不等式左端有項,分子為1,分母依次為,,,,;右端分母為,分子成等差數(shù)列,首項為3,公差為2,因此第個不等式()故答案為:()16、【解題分析】利用含有一個量詞的命題的否定的定義求解.【題目詳解】因為命題是存在量詞命題,所以其否定是全稱量詞命題即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)通過作輔助線,構(gòu)造平行四邊形,在平面PAD找到線并證明,根據(jù)線面平行的判定定理即可證明;(2)建立空間直角坐標(biāo)系,求出相應(yīng)點的坐標(biāo),進(jìn)而求得相關(guān)的向量坐標(biāo),求出平面EAC與平面PAC的法向量,根據(jù)向量的夾角公式求得答案.【小問1詳解】證明:取PA的中點F,由E為PB的中點,則,,而,,所以且,則四邊形CDFE為平行四邊形,所以,又平面PAD,平面PAD,所以平面PAD【小問2詳解】∵平面ABCD,,∴AP,AB,AD兩兩垂直,以A為原點,,,向量方向分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系,各點坐標(biāo)如下:,,,,,設(shè)平面APC的法向量為,由,,有,取,則,,即,設(shè)平面EAC的法向量為,由,,有,取,則,,即,所以,由原圖可知平面EAC與平面PAC夾角為銳角,所以平面EAC與平面PAC夾角的余弦值為18、(1)(2)【解題分析】(1)設(shè)出橢圓方程,根據(jù)短軸長和離心率求出,,從而求出橢圓方程;(2)短軸端點與焦點相連所得的線段長即為,從而求出,得到橢圓方程.【小問1詳解】設(shè)橢圓方程為,則,,則,解得:,則該橢圓的方程為【小問2詳解】設(shè)橢圓方程為,由題得:,,則,則該橢圓的方程為19、(1)(2)【解題分析】(1)求出函數(shù)的導(dǎo)函數(shù),由在時有極值0,則,兩式聯(lián)立可求常數(shù)a,b的值,從而得解析式;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,根據(jù)函數(shù)圖象的大致形狀可求出參數(shù)的取值范圍.【小問1詳解】由可得,因為在時有極值0,所以,即,解得或,當(dāng)時,,函數(shù)在R上單調(diào)遞增,不滿足在時有極值,故舍去.所以常數(shù)a,b的值分別為.所以.【小問2詳解】由(1)可知,,令,解得,當(dāng)或時,當(dāng)時,,的遞增區(qū)間是和,單調(diào)遞減區(qū)間為,當(dāng)有極大值,當(dāng)有極小值,要使函數(shù)有三個零點,則須滿足,解得.20、(1)證明過程見解析;(2).【解題分析】(1)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可.【小問1詳解】∵平面平面,平面平面平面,,∴平面;【小問2詳解】(2)建系如圖:設(shè)平面的法向量,,,,,,則,設(shè),,,解得或(舍),,∴.21、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解題分析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【題目詳解】解:(Ⅰ)因為函數(shù)在點處的切線方程為解得(Ⅱ)令,得或.因為,所以時,;時,.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【題目點撥】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.22、(1)證明見解析;(2).【解題分析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點,分別為x,y,z軸,建立空

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論