版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆北京市西城區(qū)第四中學(xué)高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若圓上至少有三個不同的點到直線的距離為,則直線的斜率的取值范圍是()A. B.C. D.2.中,,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形3.已知,,O是坐標(biāo)原點,則()A. B. C. D.4.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.195.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.6.一個平面截一球得到直徑為6的圓面,球心到這個圓面的距離為4,則這個球的體積為()A. B. C. D.7.若樣本的平均數(shù)為10,其方差為2,則對于樣本的下列結(jié)論正確的是A.平均數(shù)為20,方差為8 B.平均數(shù)為20,方差為10C.平均數(shù)為21,方差為8 D.平均數(shù)為21,方差為108.已知集合A={x︱x>-2}且,則集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.9.在銳角中,角,,所對的邊分別為,,,邊上的高,且,則等于()A. B. C. D.10.已知中,,,,則B等于()A. B.或 C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,分別以為圓心,在內(nèi)作半徑為2的三個扇形,在內(nèi)任取一點,如果點落在這三個扇形內(nèi)的概率為,那么圖中陰影部分的面積是____________.12.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.13.函數(shù)的最小正周期為__________.14.已知向量,滿足,與的夾角為,則在上的投影是;15.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛?cè)ィ?、乙兩船相距最近的距離是_____.16.若數(shù)據(jù)的平均數(shù)為,則____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知公差為正數(shù)的等差數(shù)列,,且成等比數(shù)列.(1)求;(2)若,求數(shù)列的前項的和.18.求經(jīng)過直線:與直線:的交點,且分別滿足下列條件的直線方程.(Ⅰ)與直線平行;(Ⅱ)與直線垂直.19.在△ABC中,AC=6,cosB=,C=.(1)求AB的長;(2)求△ABC的面積.20.如圖,已知矩形中,,,M是以為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面.(1)求證:平面平面;(2)當(dāng)四棱錐的體積最大時,求與所成的角21.在中,內(nèi)角A、B、C所對的邊分別為,,,已知.(Ⅰ)求角B的大小;(Ⅱ)設(shè),,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
作出圖形,設(shè)圓心到直線的距離為,利用數(shù)形結(jié)合思想可知,并設(shè)直線的方程為,利用點到直線的距離公式可得出關(guān)于的不等式,解出即可.【詳解】如下圖所示:設(shè)直線的斜率為,則直線的方程可表示為,即,圓心為,半徑為,由于圓上至少有三個不同的點到直線的距離為,所以,即,即,整理得,解得,因此,直線的斜率的取值范圍是.故選:C.【點睛】本題考查直線與圓的綜合問題,解題的關(guān)鍵就是確定圓心到直線距離所滿足的不等式,并結(jié)合點到直線的距離公式來求解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.2、C【解析】
由平面向量數(shù)量積運算可得,即,得解.【詳解】解:在中,,則,即,則為鈍角,所以為鈍角三角形,故選:C.【點睛】本題考查了平面向量數(shù)量積運算,重點考查了向量的夾角,屬基礎(chǔ)題.3、D【解析】
根據(jù)向量線性運算可得,由坐標(biāo)可得結(jié)果.【詳解】故選:【點睛】本題考查平面向量的線性運算,屬于基礎(chǔ)題.4、C【解析】
先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結(jié)果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于??碱}型.5、B【解析】
利用正弦定理可求.【詳解】由正弦定理得.故選B.【點睛】本題考查正弦定理的應(yīng)用,屬于容易題.6、C【解析】
過球心作垂直圓面于.連接與圓面上一點構(gòu)造出直角三角形再計算球的半徑即可.【詳解】如圖,過球心作垂直圓面于,連接與圓面上一點.則.故球的體積為.故選:C【點睛】本題主要考查了球中構(gòu)造直角三角形求解半徑的方法等.屬于基礎(chǔ)題.7、A【解析】
利用和差積的平均數(shù)和方差公式解答.【詳解】由題得樣本的平均數(shù)為,方差為.故選A【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合題意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合題意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合題意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,與題意相符,
故選D.9、A【解析】
在中得到,,在中得到,利用面積公式計算得到.【詳解】如圖所示:在中:,根據(jù)勾股定理得到在中:利用勾股定理得到,故故選A【點睛】本題考查了勾股定理,面積公式,意在考查學(xué)生解決問題的能力.10、D【解析】
根據(jù)題意和正弦定理求出sinB的值,由邊角關(guān)系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.【詳解】由題意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,則B=60°或B=120°,故選:D.【點睛】本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,注意內(nèi)角的范圍,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先求出三塊扇形的面積,再由概率計算公式求出的面積,進而求出陰影部分的面積.【詳解】∵,∴三塊扇形的面積為:,設(shè)的面積為,∵在內(nèi)任取一點,點落在這三個扇形內(nèi)的概率為,,∴圖中陰影部分的面積為:,故答案為:.【點睛】本題主要考查幾何概型的應(yīng)用,屬于幾何概型中的面積問題,難度不大.12、【解析】
利用誘導(dǎo)公式,二倍角公式,余弦定理化簡即可得解.【詳解】.故答案為.【點睛】本題主要考查了誘導(dǎo)公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.13、【解析】
用輔助角公式把函數(shù)解析式化成正弦型函數(shù)解析式的形式,最后利用正弦型函數(shù)的最小正周期的公式求出最小正周期.【詳解】,函數(shù)的最小正周期為.【點睛】本題考查了輔助角公式,考查了正弦型函數(shù)最小正周期公式,考查了數(shù)學(xué)運算能力.14、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值15、【解析】
根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【詳解】假設(shè)經(jīng)過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當(dāng)小時時甲、乙兩船相距最近,最近距離為.【點睛】本題考查解三角形的實際應(yīng)用,難度較易.關(guān)鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.16、【解析】
根據(jù)求平均數(shù)的公式,得到關(guān)于的方程,求得.【詳解】由題意得:,解得:,故填:.【點睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)直接利用等差數(shù)列的性質(zhì)的應(yīng)用求出數(shù)列的公差,進一步求出數(shù)列的通項公式.(2)利用(1)的通項公式,進一步利用錯位相減法求出數(shù)列的和.【詳解】(1)設(shè)公差為,由,,成等比數(shù)列,得,結(jié)合,解得,或(舍去),∴.(2)∴,∴,①,②,由①②可得:∴.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,錯位相減法在數(shù)列求和中的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)先求得直線與直線的交點坐標(biāo).根據(jù)平行直線的斜率關(guān)系得與平行直線的斜率,再由點斜式即可求得直線方程.(Ⅱ)根據(jù)垂直直線的斜率關(guān)系得與垂直的直線斜率,再由點斜式即可求得直線方程.【詳解】解方程組得,所以直線與直線的交點是(Ⅰ)直線,可化為由題意知與直線平行則直線的斜率為又因為過所以由點斜式方程可得化簡得所以與直線平行且過的直線方程為.(Ⅱ)直線的斜率為則由垂直時直線的斜率乘積為可知直線的斜率為由題意知該直線經(jīng)過點,所以由點斜式方程可知化簡可得所以與直線垂直且過的直線方程為.【點睛】本題考查了直線平行與垂直時的斜率關(guān)系,由點斜式求方程的用法,屬于基礎(chǔ)題.19、(1)(2)21【解析】
(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面積公式,即可求解.【詳解】(1)由題意,因為,且為三角形的內(nèi)角,所以,由正弦定理,可得,即,解得.(2)由(1)和,則,由三角形的面積公式,可得.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】
(1)證明,得到平面,得到答案.(2)過點M作于點E,當(dāng)M為半圓弧的中點時,四棱錐的體積最大,作于F,連接,與所成的角即與所成的角,計算得到答案.【詳解】(1)為直徑,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)過點M作于點E,∵平面平面,平面,即為四棱錐的高,又底面面積為定值.所以當(dāng)M為半圓弧的中點時,四棱錐的體積最大.作于F,連接,,與所成的角即與所成的角.在直角中,,,所以.,故與所成的角為.【點睛】本題考查了面面垂直,體積的最值,異面直線夾角,意在考查學(xué)生的空間想象能力和計算能力.21、(Ⅰ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全演講稿300字(35篇)
- 新教材高考地理二輪復(fù)習(xí)綜合題專項訓(xùn)練四作用措施類含答案
- 山東省煙臺市2024-2025學(xué)年高三上學(xué)期期中學(xué)業(yè)水平診斷考試語文試題(解析版)
- 河南省南陽市新野縣 2024 年秋期期中質(zhì)量調(diào)研八年級物理試卷
- 2024-2025學(xué)年山東省煙臺市高一上學(xué)期期中學(xué)業(yè)水平診斷數(shù)學(xué)試題(含答案)
- 房屋建造定制合同
- 調(diào)研報告:執(zhí)行費收取存在的問題及建議
- 商業(yè)土地?zé)o償轉(zhuǎn)讓協(xié)議
- 2025年高考語文古詩文篇目讀寫專練:選擇必修下冊之《望海潮》(學(xué)生版)
- 2025年中考語文復(fù)習(xí)之現(xiàn)代文閱讀:說明文句段作用(講義)
- 采購、倉庫流程圖2課件
- 被執(zhí)行人生活費申請書范文
- 第七單元“藝術(shù)之美”(主題閱讀)六年級語文上冊閱讀理解(統(tǒng)編版)
- 肉牛養(yǎng)殖投資計劃書
- 耐火磚砌筑方案
- 《作文寫作與文化修養(yǎng)培養(yǎng)與發(fā)展》
- 污水處理廠安全生產(chǎn)培訓(xùn)資料課件
- 攝影測量專業(yè)職業(yè)生涯規(guī)劃書
- 老年健康與醫(yī)養(yǎng)結(jié)合服務(wù)管理
- 全國優(yōu)質(zhì)課一等獎人教版八年級生物上冊《真菌》公開課課件(內(nèi)嵌視頻)
- 部編版一到六年級(12冊)日積月累匯總
評論
0/150
提交評論