版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省襄陽市等九地市2025屆高一下數(shù)學期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,則比多了()項A. B. C. D.2.若向量互相垂直,且,則的值為()A. B. C. D.3.對于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項和為,若對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.4.設變量、滿足約束條件,則目標函數(shù)的最大值為()A.2 B.3 C.4 D.95.用數(shù)學歸納法證明n+1n+2?n+n=-2A.2k+1 B.22k+1 C.2k+1k+16.設點,,若直線與線段沒有交點,則的取值范圍是A. B. C. D.7.等差數(shù)列的前n項和為,且,,則(
)A.10 B.20 C. D.8.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B.C. D.9.過點且垂直于直線的直線方程為()A. B.C. D.10.某高校進行自主招生,先從報名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機抽取了24名筆試者的成績,統(tǒng)計結果如下表所示.分數(shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人數(shù)234951據(jù)此估計允許參加面試的分數(shù)線大約是()A.90 B.85C.80 D.75二、填空題:本大題共6小題,每小題5分,共30分。11.若過點作圓的切線,則直線的方程為_______________.12.若復數(shù)滿足(為虛數(shù)單位),則__________.13.如圖,在中,已知點在邊上,,,則的長為____________.14.已知數(shù)列中,,,則數(shù)列通項___________15.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當下一次分針與時針重合時,時針轉過的弧度數(shù)的絕對值等于_______.16.若數(shù)列的前4項分別是,則它的一個通項公式是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角A、B、C的對邊分別為a、b、c,面積為S,已知(Ⅰ)求證:成等差數(shù)列;(Ⅱ)若求.18.在△ABC中,角A,B,C的對邊分別為a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面積;(2)若m=,A=2B,a=,求b.19.如圖,在四棱錐中,,底面為平行四邊形,平面.()求證:平面;()若,,,求三棱錐的體積;()設平面平面直線,試判斷與的位置關系,并證明.20.某科研課題組通過一款手機APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表周跑量(km/周)人數(shù)100120130180220150603010(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:注:請先用鉛筆畫,確定后再用黑色水筆描黑(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:周跑量小于20公里20公里到40公里不小于40公里類別休閑跑者核心跑者精英跑者裝備價格(單位:元)250040004500根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?21.(2012年蘇州17)如圖,在中,已知為線段上的一點,且.(1)若,求的值;(2)若,且,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
可知中共有項,然后將中的項數(shù)減去中的項數(shù)即可得出答案.【詳解】,則中共有項,所以,比多了的項數(shù)為.故選:C.【點睛】本題考查數(shù)學歸納法的應用,解題的關鍵就是計算出等式中的項數(shù),考查分析問題和解決問題的能力,屬于中等題.2、B【解析】
首先根據(jù)題意得到,再計算即可.【詳解】因為向量互相垂直,,所以.所以.故選:B【點睛】本題主要考查平面向量模長的計算,同時考查了平面向量數(shù)量積,屬于簡單題.3、B【解析】分析:由題意首先求得的通項公式,然后結合等差數(shù)列的性質得到關于k的不等式組,求解不等式組即可求得最終結果.詳解:由題意,,則,很明顯n?2時,,兩式作差可得:,則an=2(n+1),對a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實數(shù)的取值范圍為.本題選擇B選項.點睛:“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質,它們考查的還是基礎數(shù)學知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應萬變才是制勝法寶.4、D【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【詳解】畫出滿足約束條件的可行域,如圖,畫出可行域,,,,平移直線,由圖可知,直線經(jīng)過時目標函數(shù)有最大值,的最大值為9.故選D.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.5、B【解析】
要分清起止項,以及相鄰兩項的關系,由此即可分清增加的代數(shù)式?!驹斀狻慨攏=k時,左邊=k+1當n=k+1時,左邊====k+1∴從k到k+1,左邊需要增乘的代數(shù)式為22k+1【點睛】本題主要考查學生如何理解數(shù)學歸納法中的遞推關系。6、B【解析】直線恒過點且斜率為由圖可知,且故選點睛:本題主要考查了兩條直線的交點坐標,直線恒過點,直線與線段沒有交點轉化為過定點的直線與線段無公共點,作出圖象,由圖求解即可.7、D【解析】
由等差數(shù)列的前項和的性質可得:,,也成等差數(shù)列,即可得出.【詳解】解:由等差數(shù)列的前項和的性質可得:,,也成等差數(shù)列,,,解得.故選:.【點睛】本題考查了等差數(shù)列的前項和公式及其性質,考查了推理能力與計算能力,屬于中檔題.8、C【解析】
先通過三視圖找到幾何體原圖,再求幾何體的體積得解.【詳解】由題得該幾何體是一個邊長為4的正方體挖去一個圓錐(圓錐底面在正方體上表面上,圓錐頂部朝下),所以幾何體體積為.故選:C【點睛】本題主要考查三視圖還原幾何體原圖,考查組合體體積的計算,意在考查學生對這些知識的理解掌握水平.9、C【解析】
先求出直線的斜率,再求出所求直線的斜率,再利用直線的點斜式方程求解.【詳解】由題得直線的斜率為,所以所求的直線的斜率為,所以所求的直線方程為即.故選:C【點睛】本題主要考查互相垂直直線的性質,考查直線方程的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.10、C【解析】
根據(jù)題意可從樣本中數(shù)據(jù)的頻率考慮,即按成績擇優(yōu)選擇頻率為的,根據(jù)題意得到所選的范圍后再求出對應的分數(shù).【詳解】由題意得,參加面試的頻率為,結合表中的數(shù)據(jù)可得,樣本中[80,90]的頻率為,由樣本估計總體知,分數(shù)線大約為80分.故選C.【點睛】本題考查統(tǒng)計圖表的應用,解題的關鍵是理解題意,同時還要正確掌握統(tǒng)計中的常用公式,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結果,較為基礎。12、【解析】分析:由復數(shù)的除法運算可得解.詳解:由,得.故答案為:.點睛:本題考查了復數(shù)的除法運算,屬于基礎題.13、【解析】
由誘導公式可知,在中用余弦定理可得BD的長?!驹斀狻坑深}得,,在中,可得,又,代入得,解得.故答案為:【點睛】本題考查余弦定理和誘導公式,是基礎題。14、【解析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項,以為公差的等差數(shù)列,∴,∴.故答案為.點睛:在求數(shù)列公式中,除直接應用等差數(shù)列和等比數(shù)列的通項公式外,還有一種常用方法:對遞推式化簡變形,可構造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項公式求出結論.這是一種轉化與化歸思想,必須掌握.15、.【解析】
設時針轉過的角的弧度數(shù)為,可知分針轉過的角為,于此得出,由此可計算出的值,從而可得出時針轉過的弧度數(shù)的絕對值的值.【詳解】設時針轉過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應用,主要是要弄清楚時針與分針旋轉的角之間的等量關系,考查分析問題和計算能力,屬于中等題.16、【解析】
根據(jù)等比數(shù)列的定義即可判斷出該數(shù)列是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列的通項公式即可寫出該數(shù)列的一個通項公式.【詳解】解:∵,該數(shù)列是以為首項,為公比的等比數(shù)列,該數(shù)列的通項公式是:,故答案為:.【點睛】本題主要考查等比數(shù)列的定義以及等比數(shù)列的通項公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)4.【解析】試題分析:(1)在三角形中處理邊角關系時,一般全部轉化為角的關系,或全部轉化為邊的關系.題中若出現(xiàn)邊的一次式一般采用正弦定理,出現(xiàn)邊的二次式一般采用余弦定理,應用正弦、余弦定理時,注意公式變形的應用,解決三角形問題時,注意角的限制范圍;(2)在三角興中,注意隱含條件(3)解決三角形問題時,根據(jù)邊角關系靈活的選用定理和公式.(4)在解決三角形的問題中,面積公式最常用,因為公式中既有邊又有角,容易和正弦定理、余弦定理聯(lián)系起來.試題解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差數(shù)列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考點:三角函數(shù)與解三角形.18、(1);(2)【解析】
(1)當時,由余弦定理可求,利用同角三角函數(shù)基本關系式可求的值,根據(jù)三角形的面積公式即可求解.(2)當時,由余弦定理可求,利用同角三角函數(shù)基本關系式可求的值,根據(jù)二倍角的正弦函數(shù)公式可求的值,利用正弦定理可求的值.【詳解】(1)當時,,,,,.(2)當時,,,,由正弦定理得:,.【點睛】本題主要考查了余弦定理,同角三角函數(shù)基本關系式,三角形的面積公式,二倍角的正弦函數(shù)公式,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.19、(1)證明見解析;(2);(3),證明見解析.【解析】
(1)根據(jù)題意得到,,面從而得到線線垂直;(2)由圖形特點得到面,代入數(shù)據(jù)可得到體積值;(3)證明平面,利用平面平面,可得..【詳解】()證明:∵面,面,∴,又∵,面,面,,∴面,()∵底面為平行四邊形,面,∴面,∴.().證明:∵底面為平行四邊形,∴,∵面,面,∴面,又∵面面,面,∴.20、(1)見解析;(2)中位數(shù)為29.2,分布特點見解析;(3)3720元【解析】
(1)根據(jù)頻數(shù)和頻率之間的關系計算,即可得到答案;(2)根據(jù)頻率分布直方圖利用中位數(shù)兩邊頻率相等,列方程求出中位數(shù)的值,進而得出結論;(3)根據(jù)頻率分布直方圖求出休閑跑者,核心跑者,精英跑者分別人數(shù),進而求出平均值.【詳解】(1)補全該市1000名跑步愛好者周跑量的頻率分布直方圖,如下:(2)中位數(shù)的估
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 伺服放大器產(chǎn)品供應鏈分析
- 樂器用電子練習弱音器產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 《校園食品安全整改報告模板》
- 教學檔案管理與建設計劃
- 多元智能發(fā)展課程計劃
- 如何在變革中保持年度目標不變計劃
- 數(shù)藝交融:理論視角-探索數(shù)學在藝術創(chuàng)作中的應用
- 安裝維修委托合同三篇
- 刻面型寶石加工方法
- 出售梁場回遷房協(xié)議書范文范本
- 《行政能力測試》課件
- 廣西南寧市八年級上學期數(shù)學期末考試試卷
- 上海中考物理專題-計算題失分題專題(學生版)
- CEMS運行質量控制
- 公司工作日報表
- 公司“三違”行為檢查記錄表
- 標準化與產(chǎn)品標準課件
- 中考作文押題:我和我的-
- 《研究生英語》(第二版)練習答案及譯文
- 小說寫作:12條小說寫作技巧
- 三年級上冊美術課件-第6課 紅色的畫 ▏人美版 (共15張PPT)
評論
0/150
提交評論