高考數(shù)學專題《數(shù)列的概念與簡單表示》習題含答案解析_第1頁
高考數(shù)學專題《數(shù)列的概念與簡單表示》習題含答案解析_第2頁
高考數(shù)學專題《數(shù)列的概念與簡單表示》習題含答案解析_第3頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題7.1數(shù)列的概念與簡單表示練基礎(chǔ)練基礎(chǔ)1.(2021·全國高二課時練習)已知數(shù)列{an}的第1項是1,第2項是2,以后各項由an=an-1+an-2(n>2)給出,則該數(shù)列的第5項等于()A.6 B.7 C.8 D.9【答案】C【解析】利用an=an-1+an-2(n>2)逐項求解即可求得答案.【詳解】解析:∵a1=1,a2=2,an=an-1+an-2(n>2),∴a3=a2+a1=2+1=3,a4=a3+a2=3+2=5,a5=a4+a3=5+3=8.答案:C.2.(2021·全國高二課時練習)下列說法錯誤的是()A.遞推公式也是數(shù)列的一種表示方法B.a(chǎn)n=an-1,a1=1(n≥2)是遞推公式C.給出數(shù)列的方法只有圖象法、列表法、通項公式法D.a(chǎn)n=2an-1,a1=2(n≥2)是遞推公式【答案】C【解析】根據(jù)數(shù)列的概念及遞推公式的概念逐項排除答案,得出結(jié)論.【詳解】根據(jù)遞推公式和數(shù)列的第一項,我們也可以確定數(shù)列,故A正確;an=an-1(n≥2)與an=2an-1(n≥2),這兩個關(guān)系式雖然比較特殊,但都表示的是數(shù)列中的任意項與它的前后項間的關(guān)系,且都已知a1,所以都是遞推公式.故B,D正確;通過圖象、列表、通項公式我們可以確定一個數(shù)列,但是還可以有其他形式,比如列舉法,故C錯誤;故選:C.3.(2019·綏德中學高二月考)數(shù)列的通項公式,其前項和為,則A. B. C. D.【答案】C【解析】根據(jù)三角函數(shù)的周期性可,同理得,可知周期為4,.4.(2021·浙江杭州市·杭州高級中學高三其他模擬)在數(shù)列中,,,設(shè)其前n項和為,則下列命題正確的是()A. B.C. D.若,則【答案】D【解析】依題意可得,設(shè),即可判斷A,利用特殊值法判斷B、C,由,可得遞增,根據(jù)即可證明D;【詳解】解:由得,設(shè),則,故A錯.取,知B錯,時,數(shù)列不滿足,知C錯.對于D,由,知遞增,所以,知D正確;故選:D5.(2021·四川省綿陽南山中學高一期中)數(shù)列的首項,且,則()A. B. C. D.【答案】A【解析】首先根據(jù)遞推公式列出數(shù)列的前幾項,再找出數(shù)列的周期性,即可得解;【詳解】解:因為,且,所以,,,,,,所以數(shù)列是以為周期的周期數(shù)列,所以故選:A6.(2021·河南高二三模(理))分形幾何學是數(shù)學家伯努瓦·曼德爾布羅特在20世紀70年代創(chuàng)立的一門新的數(shù)學學科,它的創(chuàng)立為解決眾多傳統(tǒng)科學領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個樹形圖.若記圖2中第n行黑圈的個數(shù)為,則()A.55 B.58 C.60 D.62【答案】A【解析】表示第n行中的黑圈個數(shù),設(shè)表示第n行中的白圈個數(shù),由題意可得,根據(jù)初始值,由此遞推,不難得出所求.【詳解】已知表示第n行中的黑圈個數(shù),設(shè)表示第n行中的白圈個數(shù),則由于每個白圈產(chǎn)生下一行的一白一黑兩個圈,一個黑圈產(chǎn)生下一行的一個白圈2個黑圈,∴,又∵;;;;;,故選:A.7.(2021·河南高三其他模擬(文))數(shù)列滿足遞推公式,且,,則()A.1010 B.2020 C.3030 D.4040【答案】B【解析】已知條件可化為左右兩端同乘以有,即,,…,,通過累加求和,計算即可求得結(jié)果.【詳解】左右兩端同乘以有,從而,,…,,將以上式子累加得.由得.令,有.故選:B.8.(2019·浙江高考模擬)已知數(shù)列滿足,,,數(shù)列滿足,,,若存在正整數(shù),使得,則()A. B. C. D.【答案】D【解析】因為,,則有,,且函數(shù)在上單調(diào)遞增,故有,得,同理有,又因為,故,所以.故選D.9.(2021·云南曲靖一中高三其他模擬(理))已知數(shù)列的前項和為,,,,則______.【答案】4【解析】歸納出數(shù)列的周期,求出一個周期的和,即得解.【詳解】由題得,,,,,,所以數(shù)列的周期為6,,,所以.故答案為:410.(山東省單縣第五中學月考)數(shù)列的通項,試問該數(shù)列有沒有最大項?若有,求出最大項;若沒有,說明理由.【答案】最大項為【解析】設(shè)是該數(shù)列的最大項,則∴解得∵,∴,∴最大項為練提升TIDHNEG練提升TIDHNEG1.(2021·四川成都市·成都七中高三月考(理))數(shù)列滿足,則的值為()A. B. C. D.【答案】A【解析】由已知條件計算出數(shù)列的通項公式,然后運用裂項求和法求出結(jié)果,注意的情況進行分類討論.【詳解】,取,相減,,則推出當時,原式故選:A2.(2020·四川涼山·期末(文))德國數(shù)學家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1.猜想的數(shù)列形式為:為正整數(shù),當時,,則數(shù)列中必存在值為1的項.若,則的值為()A.1 B.2 C.3 D.4【答案】B【解析】因為,,所以,,,,,故選:B3.(2021·遼寧高二月考)設(shè)函數(shù),數(shù)列滿足,且數(shù)列是遞增數(shù)列,則實數(shù)a的取值范圍是()A. B. C. D.【答案】C【解析】本題首先可根據(jù)題意得出,然后根據(jù)數(shù)列是遞增數(shù)列得出不等式組,最后通過計算即可得出結(jié)果.【詳解】因為,,所以,因為數(shù)列是遞增數(shù)列,所以,解得,即.故選:C.4.(2021·全國高三其他模擬(理))大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和,是中華傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題.其部分項如下:0,2,4,8,12,18,24,32,40,50,…,由此規(guī)律得到以下結(jié)論正確的是()A. B.C.當為偶數(shù)時, D.當為奇數(shù)時,【答案】B【解析】直接利用數(shù)列的遞推關(guān)系式求出數(shù)列的通項公式,代入數(shù)列的具體值即可判斷出各個選項.【詳解】解:其部分項如下:0,2,4,8,12,18,24,32,40,50,,則數(shù)列的通項公式為:,所以,,當為偶數(shù)時,,當為奇數(shù)時,.故選:B.5.(2020·四川高一期末(理))已知數(shù)列滿足,,為數(shù)列的前項和.若對任意實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.【答案】A【解析】由和與通項的關(guān)系先求出,進而求出,,再用裂項相消求出即可獲解.【詳解】設(shè)數(shù)列的前項和為,由題意得,當時,,即當時,所以,當時,,也滿足,所以故故,所以實數(shù)的取值范圍為

故選:A.6.(2021·四川成都市·樹德中學高三其他模擬(理))已知數(shù)列,,其中數(shù)列滿足,前項和為滿足;數(shù)列滿足:,且對任意的?都有:,則數(shù)列的第47項的值為()A.384 B.47 C.49 D.376【答案】A【解析】根據(jù),分別取不同的n值,求得,并根據(jù),求得;取得,,從而利用累加法求得,從而求得結(jié)果.【詳解】時,,解得,時,,得,時,,得,從而有,,時,,得,時,,得,則,,又,故,取得,,則故,則,故數(shù)列的第47項為故選:A7.【多選題】(2021·遼寧高三月考)已知數(shù)列滿足:,是數(shù)列的前項和,,下列命題正確的是()A. B.數(shù)列是遞增數(shù)列C. D.【答案】ABD【解析】選項A.設(shè),求出其導(dǎo)函數(shù)得出其單調(diào)性,可得,,設(shè),求出其導(dǎo)函數(shù),得出其單調(diào)性,可得,從而可判斷A;選項B.設(shè),求出其導(dǎo)數(shù),借助于選項A中構(gòu)造的函數(shù)結(jié)論,可得其單調(diào)性,從而可判斷;選項C.由可判斷;選項:由選項B數(shù)列是遞增數(shù)列,所以,由選項A中得到的結(jié)論可得,從而可判斷.【詳解】由題意,則設(shè),則所以在上的單調(diào)遞減,所以,即當時,可得,即設(shè),所以在上的單調(diào)遞增,所以取,可得,即所以,所以選項A正確.設(shè),則由上在上恒成立,則所以在上恒成立,所以在上單調(diào)遞增.所以數(shù)列是遞增數(shù)列,故選項B正確.由,所以,所以選項C不正確.由數(shù)列是遞增數(shù)列,所以由上,則,所以所以,故選項D正確.故選:ABD8.【多選題】(2021·福建省福州第一中學高三其他模擬)斐波那契螺旋線,也稱“黃金螺旋”,是根據(jù)斐波那契數(shù)列畫出來的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長方形,然后在正方形里面畫一個90度的扇形,連起來的弧線就是斐波那契螺旋線.它來源于斐波那契數(shù)列,又稱為黃金分割數(shù)列.現(xiàn)將斐波那契數(shù)列記為,,,邊長為斐波那契數(shù)的正方形所對應(yīng)扇形面積記為,則()A. B.C. D.【答案】AD【解析】根據(jù)數(shù)列的遞推公式可判斷選項A,再根據(jù)累加法計算判斷選項B,根據(jù)扇形的面積公式判斷選項C,再次應(yīng)用累加法及遞推公式判斷選項D.【詳解】由遞推公式,可得,,所以,A選項正確;又由遞推公式可得,,,類似的有,累加得,故錯誤,B選項錯誤;由題可知扇形面積,故,故錯誤,C選項錯誤;由,,,,類似的有,累加得,又,所以,所以正確,D選項正確;故選:AD.9.(2021·全國高三其他模擬(理))已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,若恒成立,求實數(shù)的取值范圍.【答案】(1);(2).【解析】(1)由題意可得當時與已知條件兩式相減,即可得,再檢驗是否滿足即可.(2)由等差數(shù)列前項和公式求出,由不等式分離出,轉(zhuǎn)化為最值問題,再利用基本不等式求最值即可求解.【詳解】(1)因為,所以兩式相減可得:所以,當時,滿足,所以,(2),由可得:,所以,令,只需.,當且僅當即時等號成立,此時,所以,所以實數(shù)的取值范圍為.10.(2020·湖北宜昌·其他(文))數(shù)列中,,.(1)求,的值;(2)已知數(shù)列的通項公式是,,中的一個,設(shè)數(shù)列的前項和為,的前項和為,若,求的取值范圍.【答案】(1),(2),且是正整數(shù)【解析】(1)∵,∴∴(2)由數(shù)列的通項公式是,,中的一個,和得數(shù)列的通項公式是由可得∴∴∵,∴即由,得,解得或∵是正整數(shù),∴所求的取值范圍為,且是正整數(shù)練真題TIDHNEG練真題TIDHNEG1.(2021·浙江高考真題)已知數(shù)列滿足.記數(shù)列的前n項和為,則()A. B. C. D.【答案】A【解析】顯然可知,,利用倒數(shù)法得到,再放縮可得,由累加法可得,進而由局部放縮可得,然后利用累乘法求得,最后根據(jù)裂項相消法即可得到,從而得解.【詳解】因為,所以,.由,即根據(jù)累加法可得,,當且僅當時取等號,,由累乘法可得,當且僅當時取等號,由裂項求和法得:所以,即.故選:A.2.(2019·浙江高考真題)設(shè),數(shù)列中,,,則()A.當 B.當C.當 D.當【答案】A【解析】對于B,令0,得λ,取,∴,∴當b時,a10<10,故B錯誤;對于C,令x2﹣λ﹣2=0,得λ=2或λ=﹣1,取a1=2,∴a2=2,…,an=2<10,∴當b=﹣2時,a10<10,故C錯誤;對于D,令x2﹣λ﹣4=0,得,取,∴,…,10,∴當b=﹣4時,a10<10,故D錯誤;對于A,,,,an+1﹣an>0,{an}遞增,當n≥4時,an1,∴,∴()6,∴a1010.故A正確.故選:A.3.(2017·全國高考真題(理))(2017新課標全國I理科)幾位大學生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是()A.440B.330C.220D.110【答案】A【解析】由題意得,數(shù)列如下:1,則該數(shù)列的前1+2+?+k=k(k+1)Sk(k+1)要使k(k+1)2>100,有k≥14,此時k+2<2k+1,所以k+2是第k+1組等比數(shù)列所以k=2t?3≥14,則t≥5所以對應(yīng)滿足條件的最小整數(shù)N=29×304.(2020·全國高考真題(理))0-1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列滿足,且存在正整數(shù),使得成立,則稱其為0-1周期序列,并稱滿足的最小正整數(shù)為這個序列的周期.對于周期為的0-1序列,是描述其性質(zhì)的重要指標,下列周期為5的0-1序列中,滿足的序列是()A. B. C. D.【答案】C【解析】由知,序列的周期為m,由已知,,對于選項A,,不滿足;對于選項B,,不滿足;對于選項D,,不滿足;故選:C5.(2020·全國高考真題(文))數(shù)列滿足,前16項和為540,則______________.【答案】【解析】分析:對為奇偶數(shù)分類討

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論