版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DataWarehouseand
DataMiningYangYan2023/1/26HD-ITR2CourseOutlineDatawarehouseIntroductionDatamodelDataStorageOperatingAlgorithmsQueryProcessingandOptimizationFromdatawarehousingtodataminingDataminingIntroductionMiningAssociationRulesClassificationClusterAnalysisMiningComplexTypesofData2023/1/26HD-ITR3
Part2
DataWarehouse2023/1/26HD-ITR4ContentsDatawarehouseIntroductionDatamodelDataStorageandindexingOperatingAlgorithmsQueryProcessingandOptimizationFromdatawarehousingtodatamining2023/1/26HD-ITR5Chapter1Introduction6.1Fromdatabasetodatawarehouse6.2Whatisadatawarehouse6.3DBMSvs.DWMS6.4Datawarehousearchitectureandproblems6.5Somerelatedconcepts
6.1Fromdatabasetodatawarehouse2023/1/26HD-ITR66.1FromdatabasetodatawarehouseWhydatawarehouseDatabase:FortransactionprocessingIttriestodoanalyticalprocessing.Buttransactionprocessingandanalyticalprocessingareconflictwitheachother.2023/1/26HD-ITR7Whydatawarehouse“spiderweb”problemToavoidconflictamongdepartmentsorusersinacorporationandsimplifydataviewofusers,aextractionprogramisappliedwidely.Exactionwithoutanycontrolresultsinacomplicatednet,whichiscalled“spiderweb”.Thebiggerthecorporation,theseriousthespiderwebproblem.Eventhedataintwodifferentnodescomesfromthesamedatabase,theyhavedifferentextractingtime,differentextractingalgorithms,differentlevelofdataandrefertodifferentexternaldata.Thus,forthesamequestion,differentnodeswillgivedifferentanswers.Howaboutthedecisionmaker?6.1Fromdatabasetodatawarehouse2023/1/26HD-ITR8SeparatinganalyticalprocessingsystemfromtransactionprocessingsystemtransactionprocessingsystemDaytodayoperationbasedondatabaseForexample,bankdatabaseUsers:operatorsDataprocessed:detaileddataPurpose:operationofcorporationanalyticalprocessingsystem
AnalysisofdataforassociationandrulesForexample,analyzingtheemploymentofgraduatestudentstoplantherecruit.Users:managersorengineersofdataanalysisDataprocessed:summarizeddataPurpose:supportdecisionmaking6.1FromdatabasetodatawarehouseDatawarehouseisforanalyticalprocessing2023/1/26HD-ITR9DataprocessingisdividedintotwotypesOLTPHigherfrequencyofdataaccessingandshortertimeforeachoperation
----databasesystemOLAPADSSapplicationprogrammayrunseveralhoursandconsumelotsofresource.
----datawarehousesystem6.1Fromdatabasetodatawarehouse2023/1/26HD-ITR10Chapter1Introduction6.1Fromdatabasetodatawarehouse6.2Whatisadatawarehouse6.3DBMSvs.DWMS6.4Datawarehousearchitectureandproblems6.5Somerelatedconcepts
6.2Whatisadatawarehouse2023/1/26HD-ITR11Whatisadatawarehouse
“Adatawarehouseisasubject-oriented,
integrated,time-variant,andnonvolatilecollectionofdatainsupportofmanagement’sdecision-makingprocess.”
--W.H.Inmon.19926.2Whatisadatawarehouse2023/1/26HD-ITR12DataWarehousePropertiesSubjectOrientedIntegratedTimeVariantNonVolatileDataWarehouse2023/1/26HD-ITR13FourpropertiesofdatawarehouseSubject-OrientedOrganizedaroundmajorsubjects,suchascustomer,product,sales.Focusingonthemodelingandanalysisofdatafordecisionmakers,notondailyoperationsortransactionprocessing.Provideasimpleandconciseviewaroundparticularsubjectissuesbyexcludingdatathatarenotusefulinthedecisionsupportprocess.6.2Whatisadatawarehouse2023/1/26HD-ITR14
OperationalSystemsSavingsSharesLoansInsuranceEquityPlansCustomerFinancialInformationDataWarehouseSubjectArea2023/1/26HD-ITR156.2Whatisadatawarehouse2023/1/26HD-ITR16FourpropertiesofdatawarehouseIntegratedConstructedbyintegratingmultiple,heterogeneousdatasourcesrelationaldatabases,flatfiles,on-linetransactionrecordsDatacleaninganddataintegrationtechniquesareapplied.Ensureconsistencyinnamingconventions,encodingstructures,attributemeasures,etc.amongdifferentdatasourcesE.g.,Hotelprice:currency,tax,breakfastcovered,etc.Whendataismovedtothewarehouse,itisconverted.6.2Whatisadatawarehouse2023/1/26HD-ITR17JJones女1945年7月20日J(rèn)Jones去年有兩張罰單一次大事故……人壽保險(xiǎn)汽車保險(xiǎn)JJonesMain大街123號(hào)已婚……房產(chǎn)保險(xiǎn)JJones兩個(gè)孩子高血壓……健康保險(xiǎn)JJones女1945年7月20日出生去年有兩張罰單一次大事故Main大街123號(hào)已婚兩個(gè)孩子高血壓……顧客2023/1/26HD-ITR186.2WhatisadatawarehouseFourpropertiesofdatawarehouseTime-VariantThetimehorizonforthedatawarehouseissignificantlylongerthanthatofoperationalsystems.Operationaldatabase:currentvaluedata.Datawarehousedata:provideinformationfromahistoricalperspective(e.g.,past5-10years)EverykeystructureinthedatawarehouseContainsanelementoftime,explicitlyorimplicitlyButthekeyofoperationaldatamayormaynotcontain“timeelement”.Time-variantHistoricaldatashouldbeappendedwiththetimepassed.Olddatamaybedeleted.Integrateddatashouldbechangedfortheabovetworeasons.
2023/1/26HD-ITR196.2WhatisadatawarehouseDataTime01/0902/0903/09DataforJanuaryDataforFebruaryDataforMarchDataWarehouse2023/1/26HD-ITR206.2WhatisadatawarehouseFourpropertiesofdatawarehouseNon-VolatileAphysicallyseparatestoreofdatatransformedfromtheoperationalenvironment.Operationalupdateofdatadoesnotoccurinthedatawarehouseenvironment.Doesnotrequiretransactionprocessing,recovery,andconcurrencycontrolmechanismsRequiresonlytwooperationsindataaccessing:initialloadingofdataandaccessofdata.2023/1/26HD-ITR21Typicallydatainthedatawarehouseisnotupdatedordeleted.ReadLoadINSERTReadUPDATEDELETEOperationalDatabasesWarehouseDatabase2023/1/26HD-ITR22ChangingDataOperationalDatabasesWarehouseDatabaseFirsttimeloadRefreshRefreshRefreshPurgeorArchive2023/1/26HD-ITR236.2WhatisadatawarehouseOtherpropertiesofdatawarehouselargeamountofdata10GB,…TBManagingitsdatawithrelationaldatabasemanagementsystem.Fewusers.2023/1/26HD-ITR24Chapter6Introduction6.1Fromdatabasetodatawarehouse6.2Whatisadatawarehouse6.3DBMSvs.DWMS6.4Datawarehousearchitectureandproblems6.5Somerelatedconcepts
6.3DBMSvs.DWMS2023/1/26HD-ITR256.3DBMSvs.DWMS
OLTPOn-LineTransactionProcessingMajortaskoftraditionalrelationalDBMSDay-to-dayoperations:purchasing,inventory,banking,manufacturing,payroll,registration,accounting,etc.2023/1/26HD-ITR266.3DBMSvs.DWMS
OLAPOn-LineAnalytical
ProcessingMajortaskofdatawarehousesystemDataanalysisanddecisionmaking2023/1/26HD-ITR27Distinctfeatures(OLTPvs.OLAP):Userandsystemorientation:customervs.marketDatacontents:current,detailedvs.historical,consolidatedDatabasedesign:ER+applicationvs.star+subjectView:current,localvs.evolutionary,integratedAccesspatterns:updatevs.read-onlybutcomplexqueries6.3DBMSvs.DWMS
2023/1/26HD-ITR28DataWarehousevs.HeterogeneousDBMSTraditionalheterogeneousDBintegration:Buildwrappers/mediatorsontopofheterogeneousdatabasesQuerydrivenapproachWhenaqueryisposedtoaclientsite,ameta-dictionaryisusedtotranslatethequeryintoqueriesappropriateforindividualheterogeneoussitesinvolved,andtheresultsareintegratedintoaglobalanswersetComplexinformationfiltering,competeforresourcesDatawarehouse:update-driven,highperformanceInformationfromheterogeneoussourcesisintegratedinadvanceandstoredinwarehousesfordirectqueryandanalysis6.3DBMSvs.DWMS
2023/1/26HD-ITR296.3DBMSvs.DWMS2023/1/26HD-ITR306.3DBMSvs.DWMSWhySeparateDataWarehouse?HighperformanceforbothsystemsDBMS—tunedforOLTP:accessmethods,indexing,concurrencycontrol,recoveryWarehouse—tunedforOLAP:complexOLAPqueries,multidimensionalview,consolidation.Differentfunctionsanddifferentdatamissingdata:DecisionsupportrequireshistoricaldatawhichoperationalDBsdonottypicallymaintaindataconsolidation:DSrequiresconsolidation(aggregation,summarization)ofdatafromheterogeneoussourcesdataquality:differentsourcestypicallyuseinconsistentdatarepresentations,codesandformatswhichhavetobereconciledNote:TherearemoreandmoresystemswhichperformOLAPanalysisdirectlyonrelationaldatabases2023/1/26HD-ITR316.3DBMSvs.DWMSDoingOLTPandOLAPinthesamedatabasesystemisoftenimpracticalSolution:Builda“datawarehouse”CopydatafromvariousOLTPsystemsOptimizedataorganization,systemtuningforOLAPTransactionsaren’tslowedbybiganalysisqueriesPeriodicallyrefreshthedatainthewarehouse2023/1/26HD-ITR32Chapter6Introduction6.1Fromdatabasetodatawarehouse6.2Whatisadatawarehouse6.3DBMSvs.DWMS6.4Datawarehousearchitectureandproblems6.5Somerelatedconcepts
6.4Datawarehousearchitectureand
problems2023/1/26HD-ITR336.4DatawarehousearchitectureandproblemsE:ExtractT:TransformL:LoadDataMartDataMartDataSourcesMulti-TieredArchitectureDataStorageFront-EndToolsDatawarehousearchitecture2023/1/26HD-ITR34DatawarehousearchitectureDataSourceDataStorageApplicationToolsVisualization6.4Datawarehousearchitectureandproblems2023/1/26HD-ITR356.4DatawarehousearchitectureandproblemsProblemsofdatawarehouseDatamodelLogicaldatastructureAlgebraicoperationsdatadefinitionandmanagementlanguageStorageandindexstructureAlgorithmsofOLAPQueryprocessingandoptimizationofOLAPDataextraction,transformationandloadingDatamaintenance2023/1/26HD-ITR36Chapter6Introduction6.1Fromdatabasetodatawarehouse6.2Whatisadatawarehouse6.3DBMSvs.DWMS6.4Datawarehousearchitectureandproblems6.5Somerelatedconcepts
6.5Somerelatedconcepts2023/1/26HD-ITR376.5SomerelatedconceptsETL:extract/transformation/loadETL工具就是進(jìn)行數(shù)據(jù)的抽取、轉(zhuǎn)換和“凈化提煉”處理?!皟艋釤挕奔磳?duì)從多個(gè)不同業(yè)務(wù)數(shù)據(jù)庫(kù)所抽取的數(shù)據(jù),進(jìn)行數(shù)據(jù)項(xiàng)名稱的統(tǒng)一、位數(shù)的統(tǒng)一、編碼的統(tǒng)一和形式的統(tǒng)一,消除重復(fù)數(shù)據(jù)。ETL工具包括:dataextract,datatransform,datacleaning,dataloading.2023/1/26HD-ITR386.5SomerelatedconceptsDataRepository
Spacefordataandmetadata.Thereare3storagemethods:MultidimensionaldatabaseRelationaldatabaseHybridoftheabove
2023/1/26HD-ITR396.5Somerelatedconcepts數(shù)據(jù)業(yè)務(wù)系統(tǒng)中提取的或者從外部數(shù)據(jù)源中導(dǎo)入的數(shù)據(jù)經(jīng)過(guò)清洗、轉(zhuǎn)化后成為數(shù)據(jù)倉(cāng)庫(kù)的原始數(shù)據(jù)。由于需要數(shù)據(jù)倉(cāng)庫(kù)進(jìn)行OLAP分析和數(shù)據(jù)挖掘,因此需要在原始數(shù)據(jù)的基礎(chǔ)上增加冗余信息,比如進(jìn)行大量的預(yù)運(yùn)算,建立多維數(shù)據(jù)庫(kù),以求迅速的展現(xiàn)數(shù)據(jù)。2023/1/26HD-ITR406.5Somerelatedconcepts元數(shù)據(jù)(Metadata)數(shù)據(jù)是對(duì)事物的描述,“元數(shù)據(jù)”就是描述數(shù)據(jù)的數(shù)據(jù),它提供了有關(guān)數(shù)據(jù)的環(huán)境,用于構(gòu)造、維持、管理和使用數(shù)據(jù)倉(cāng)庫(kù)。數(shù)據(jù)倉(cāng)庫(kù)的元數(shù)據(jù)主要包含兩類數(shù)據(jù):第一種是為了從操作型環(huán)境向數(shù)據(jù)倉(cāng)庫(kù)環(huán)境轉(zhuǎn)換而建立的元數(shù)據(jù),它包括所有源數(shù)據(jù)項(xiàng)的名稱、屬性及其在提取倉(cāng)庫(kù)中的轉(zhuǎn)化;第二種元數(shù)據(jù)在數(shù)據(jù)倉(cāng)庫(kù)中是用來(lái)與最終用戶的多維商業(yè)模型和前端工具之間建立映射的。2023/1/26HD-ITR411.5數(shù)據(jù)倉(cāng)庫(kù)的基本概念在轉(zhuǎn)換后,(User_ID,User_Name,Address)3列原始的存放位置、進(jìn)行的清洗轉(zhuǎn)化處理、數(shù)據(jù)最終的存放位置、數(shù)據(jù)格式、數(shù)據(jù)使用的規(guī)則等等都將作為元數(shù)據(jù)的一部分。2023/1/26HD-ITR426.5Somerelatedconcepts主題(Subject)主題(Subject)是一個(gè)在較高層次上將數(shù)據(jù)歸類的標(biāo)準(zhǔn),每一個(gè)主題基本對(duì)應(yīng)一個(gè)宏觀的分析領(lǐng)域。面向主題的數(shù)據(jù)組織方式,就是在較高層次上對(duì)分析對(duì)象數(shù)據(jù)的一個(gè)完整、一致的描述,能完整、統(tǒng)一地刻畫各個(gè)分析對(duì)象所涉及的企業(yè)各項(xiàng)數(shù)據(jù),以及數(shù)據(jù)之間的聯(lián)系。2023/1/26HD-ITR
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語(yǔ)外貿(mào)大學(xué)《辦公室事務(wù)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《自動(dòng)變速器》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東培正學(xué)院《海關(guān)報(bào)關(guān)實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)上冊(cè)《5.1.1 從算式到方程》課件與作業(yè)
- 七年級(jí)上冊(cè)《2.2.1 第1課時(shí) 有理數(shù)的乘法》課件與作業(yè)
- 廣東茂名幼兒師范專科學(xué)?!栋l(fā)動(dòng)機(jī)構(gòu)造與原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東理工職業(yè)學(xué)院《三維動(dòng)畫基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 一年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 物流工作總結(jié)范文10篇
- 【北京特級(jí)教師】2020-2021學(xué)年人教版高中地理必修二輔導(dǎo)講義:工業(yè)區(qū)位選擇和工業(yè)地域
- 學(xué)校安全工作匯報(bào)PPT
- 一年級(jí)語(yǔ)文上冊(cè)《兩件寶》教案1
- 關(guān)注健康預(yù)防甲流甲型流感病毒知識(shí)科普講座課件
- 咨詢公司工作總結(jié)(共5篇)
- GB/T 4852-2002壓敏膠粘帶初粘性試驗(yàn)方法(滾球法)
- GB/T 38836-2020農(nóng)村三格式戶廁建設(shè)技術(shù)規(guī)范
- 醫(yī)院固定資產(chǎn)及物資購(gòu)置工作流程圖
- 中學(xué)學(xué)校辦公室主任個(gè)人述職報(bào)告
- GA/T 1774-2021法庭科學(xué)手印檢驗(yàn)實(shí)驗(yàn)室建設(shè)規(guī)范
- 京東商業(yè)計(jì)劃書課件
- 2023年陜西金融控股集團(tuán)有限公司校園招聘筆試題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論