2023屆上海市周浦中學(xué)數(shù)學(xué)高一下期末聯(lián)考試題含解析_第1頁
2023屆上海市周浦中學(xué)數(shù)學(xué)高一下期末聯(lián)考試題含解析_第2頁
2023屆上海市周浦中學(xué)數(shù)學(xué)高一下期末聯(lián)考試題含解析_第3頁
2023屆上海市周浦中學(xué)數(shù)學(xué)高一下期末聯(lián)考試題含解析_第4頁
2023屆上海市周浦中學(xué)數(shù)學(xué)高一下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用輾轉(zhuǎn)相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.62.已知是的邊上的中點,若向量,,則向量等于()A. B. C. D.3.一個盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個,從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.754.已知,則三個數(shù)、、由小到大的順序是()A. B.C. D.5.設(shè),且,則的最小值為()A. B. C. D.6.已知滿足,則()A.1 B.3 C.5 D.77.已知函數(shù),(),若對任意的(),恒有,那么的取值集合是()A. B. C. D.8.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.29.函數(shù)圖像的一條對稱軸方程為()A. B. C. D.10.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前三項為,則此數(shù)列的通項公式為______12.我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中獨立提出了一種求三角形面積的方法——“三斜求積術(shù)”,即的,其中分別為內(nèi)角的對邊.若,且則的面積的最大值為____.13.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.14.已知{}是等差數(shù)列,是它的前項和,且,則____.15.已知,則的最小值是__________.16.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.(1)證明:坐標(biāo)原點O在圓M上;(2)設(shè)圓M過點,求直線l與圓M的方程.18.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.19.已知,,,求:的值.20.已知為等差數(shù)列,且,.(1)求的通項公式;(2)若等比數(shù)列滿足,,求數(shù)列的前項和公式.21.某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)輾轉(zhuǎn)相除法計算最大公約數(shù).【詳解】因為所以最大公約數(shù)是8,選B.【點睛】本題考查輾轉(zhuǎn)相除法,考查基本求解能力.2、C【解析】

根據(jù)向量加法的平行四邊形法則,以及平行四邊形的性質(zhì)可得,,解出向量.【詳解】根據(jù)平行四邊形法則以及平行四邊形的性質(zhì),有.故選.【點睛】本題考查向量加法的平行四邊形法則以及平行四邊形的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.3、D【解析】

由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球為互斥事件,根據(jù)互斥事件的和即可求解.【詳解】因為從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因為從盒子中摸出1個球為黑球或紅球為互斥事件,所以摸出黑球或紅球的概率,故選D.【點睛】本題主要考查了兩個互斥事件的和事件,其概率公式,屬于中檔題.4、C【解析】

比較三個數(shù)、、與的大小關(guān)系,再利用指數(shù)函數(shù)的單調(diào)性可得出、的大小,可得出這三個數(shù)的大小關(guān)系.【詳解】,,,,且,函數(shù)為減函數(shù),所以,,即,,因此,,故選C.【點睛】本題考查指數(shù)冪的大小關(guān)系,常用的方法有如下幾種:(1)底數(shù)相同,指數(shù)不同,利用同底數(shù)的指數(shù)函數(shù)的單調(diào)性來比較大??;(2)指數(shù)相同,底數(shù)不同,利用同指數(shù)的冪函數(shù)的單調(diào)性來比較大?。唬?)底數(shù)和指數(shù)都不相同時,可以利用中間值法來比較大小.5、D【解析】

本題首先可將轉(zhuǎn)化為,然后將其化簡為,最后利用基本不等式即可得出結(jié)果.【詳解】,當(dāng)且僅當(dāng),即時成立,故選D.【點睛】本題考查利用基本不等式求最值,基本不等式公式為,考查化歸與轉(zhuǎn)化思想,是簡單題.6、B【解析】

已知兩個邊和一個角,由余弦定理,可得?!驹斀狻坑深}得,,,代入,化簡得,解得(舍)或.故選:B【點睛】本題考查用余弦定理求三角形的邊,是基礎(chǔ)題。7、A【解析】當(dāng)時,,畫出圖象如下圖所示,由圖可知,時不符合題意,故選.【點睛】本題主要考查含有絕對值的不等式的解法,考查選擇題的解題策略中的特殊值法.主要的需要滿足的是,根據(jù)不等式的解法,大于在中間,小于在兩邊,可化簡為,左右兩邊為二次函數(shù),中間可以由對數(shù)函數(shù)圖象平移得到,由此畫出圖象驗證是否符合題意.8、B【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.9、B【解析】

對稱軸為【詳解】依題意有解得故選B【點睛】本題考查的對稱軸,屬于基礎(chǔ)題。10、A【解析】

根據(jù)等比中項定義可得;利用和表示出等式,可構(gòu)造方程求得;利用等差數(shù)列求和公式求得結(jié)果.【詳解】由題意得:設(shè)等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應(yīng)用;關(guān)鍵是能夠構(gòu)造方程求出公差,屬于常考題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意可得,解得.

∴等差數(shù)列的前三項為-1,1,1.

則1.

故答案為.12、【解析】

由已知利用正弦定理可求,代入“三斜求積”公式即可求得答案.【詳解】因為,所以整理可得,由正弦定理得因為,所以所以當(dāng)時,的面積的最大值為【點睛】本題用到的知識點有同角三角函數(shù)的基本關(guān)系式,兩角和的正弦公式,正弦定理等,考查學(xué)生分析問題的能力和計算整理能力.13、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.14、【解析】

根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【詳解】解:由題意可知,;同理。故.故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.15、【解析】分析:利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成,展開后,利用基本不等式求得y的最小值.詳解:因為,所以,所以(當(dāng)且僅當(dāng)時等號成立),則的最小值是,總上所述,答案為.點睛:該題考查的是有關(guān)兩個正數(shù)的整式形式和為定值的情況下求其分式形式和的最值的問題,在求解的過程中,注意相乘,之后應(yīng)用基本不等式求最值即可,在做乘積運算的時候要注意乘1是不變的,如果不是1,要做除法運算.16、【解析】

根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點睛】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2),或,.【解析】

(1)設(shè),.由可得,則.又,故.因此的斜率與的斜率之積為,所以.故坐標(biāo)原點在圓上.(2)由(1)可得.故圓心的坐標(biāo)為,圓的半徑.由于圓過點,因此,故,即,由(1)可得.所以,解得或.當(dāng)時,直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓的方程為.當(dāng)時,直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓的方程為.【名師點睛】直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;在解決直線與拋物線的位置關(guān)系時,要特別注意直線與拋物線的對稱軸平行的特殊情況.中點弦問題,可以利用“點差法”,但不要忘記驗證或說明中點在曲線內(nèi)部.18、(1)(2)【解析】

(1)由題可得,解出,,進(jìn)而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.19、【解析】

求出和的取值范圍,利用同角三角函數(shù)的基本關(guān)系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點睛】本題考查利用兩角差的余弦公式求值,解題的關(guān)鍵就是利用已知角來表示所求角,考查計算能力,屬于中等題.20、(1);(2).【解析】

本試題主要是考查了等差數(shù)列的通項公式的求解和數(shù)列的前n項和的綜合運用.、(1)設(shè)公差為,由已知得解得,(2),等比數(shù)列的公比利用公式得到和.21、(1);(2)廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.【解析】

(1)由不搞促銷活動,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論